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Abstract—It is a widely-adopted strategy for developers to monitor the values of program variables when debugging in practice. In

particular, developers often set breakpoints at specific locations or execute the program step by step in the debugging mode to inspect

if abnormal values or status will be observed for concerned variables. Such a practical debugging strategy can facilitate developers in

understanding and localizing the target fault. This study aims to identify suspicious program variables of a given fault (i.e., denoted as

fault-correlated variables) automatically, thus facilitating the debugging activities for developers. To the best of our knowledge, this is

the finest granularity in fault localization (FL) so far, which can address the limitations of being coarse-grained as faced by existing FL

techniques. However, isolating fault-correlated variables precisely is challenging since there are usually substantially different variables

used or defined in a program, and plenty of them are in the same basic block which cannot be well discriminated from each other since

they will be either executed or not against the given test suite. To address such challenges, this study presents IsoVar, a two-phase

model to isolate fault-correlated variables. Specifically, IsoVar first performs statistical analysis based on variable execution matrices,

which is a novel concept proposed in this study, to identify a set of suspicious variables. It then observes the impacts of those variables

on the program dynamically after applying subtle mutations at the bytecode level, to further isolate fault-correlated variables. Extensive

experiments on Defects4J and Bears demonstrate that IsoVar can outperform state-of-the-art techniques significantly (13:0% for MAP

and 19:3% for MRR). More importantly, we incorporated IsoVar into 11 existing FL techniques as well as 14 automated program repair

techniques, and found that IsoVar can significantly boost their performance.

Index Terms—Fault localization, program variables, debugging

Ç

1 INTRODUCTION

MODERN software systems are inevitably shipped and
launchedwith bugs (also known as faults or defects [1]),

which might cause disastrous consequences. What is even
worse is that there can be far more software bugs in the world than
we will likely ever know about [2]. Therefore, debugging is
widely adopted in practice aiming to expose and repair as
many bugs as possible while it is always a time-consuming
and labor-intensive task. Specifically, it has been reported
that debugging software bugs can cost nearly 50% of the total
budget of software development [3]. To facilitate develop-
ments in debugging, a wide range of automated techniques,

such as fault localization (FL) [4], [5], [6], [7], [8], [9], [10] and
automated program repair (APR) [11], [12], [13], [14], [15], [16],
[17] have been proposed. The first andmost pivotal step is to
locate the buggy code entities, and the effectiveness of which
can significantly affect the performance of other debugging
activities [18], [19], [20].

Existing FL techniques can differentiate from each other in
the granularity of the buggy code elements being located. Spe-
cifically, buggy code entities are usually identified at the source
file level [4], method level [5], [6] or the statement level [7].
However, it has been pointed out that even identifying relevant
statements is often insufficient to help developers fix bugs [21].
Locating buggy code elements in isolation can be of little use-
fulness in practice since developers still need assistance to iden-
tify and understand the root cause of buggy behaviors [21]. In
particular, the contextual information [4] which can explain
why the identified code elements are buggy [22] is much
desired. Therefore, researchers have recently integrated other
sources of information, such as software changes and bug-
inducing commits in FL [4], [7], [23]; or adapted other methods
to enhance FL’s effectiveness and interpretability [22].

Specifically, Locus was recently proposed to locate soft-
ware changes by mining software version histories with the
aim to provide more contextual information for fault locali-
zation [4]. HSFL was proposed to enhance existing FL tech-
niques via identifying the bug-inducing commits in the first
place [7]. However, these two techniques rely on the com-
plete version histories of a project, which might not always
be available. Moreover, they provide the results at the state-
ment or commit level, which is still not fine-grained enough
as revealed by an existing study [23]. Program state-based
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techniques have also attracted considerable research atten-
tion over the years [24], which locate bugs via inspecting the
variables and their values at a particular point during pro-
gram execution. For instance, Zeller et al. proposed to iden-
tify variables and values of a program state that are relevant
for a failure via isolating cause-effect chains based on delta
debugging [25]. Gupta et al. proposed to locate faulty code
utilizing failure-inducing chops via performing forward and
backward program slicing based on the minimized failure-
inducing input [26]. However, these techniques heavily rely
on the delta debugging technique [27], which is time-consum-
ing. Delta debugging aims to identify the minimized inputs
that can trigger the failure. However, thousands of states
may exist in the program execution, and thus the cost is
exceptionally high [24]. Such extensive overhead limits their
practical usefulness to large-scale open-source projects.
Moreover, the idea of simplifying failure-inducing inputs is
orthogonal to conventional fault localization techniques [26],
in which the identified locations may not be the locations
where the bugs reside as pointed out by Gupta et al. [26].
Consequently, the results cannot be directly integrated into
other debugging techniques such as automated program
repair.

Driven by the limitations of existing techniques, we are
motivated to revisit the debugging practices of developers
and inspect what useful information they are looking for
during debugging. Actually, in practice, it is widely adopted
to monitor the values of program variables (e.g., primitive
types or objects) when debugging with the aim to locate and
understand buggy behaviors. In particular, developers often
set breakpoints at specific locations or execute the program
step by step in the debugging mode, and then monitor those
concerned program variables. If unexpected values or status
are observed for certain variables, it is likely that the fault
resides at those statements containing those variables with
abnormal values or status. The following shows two quotes
from the discussions of bug reports tracked for large-scale
open-source Apache projects. Developers are trying to
debug and understand the faults via observing the abnormal
values of concerned variables (i.e., buffer and gTranscoder
for the two bug reports respectively).

“The NullPointerExceptions is seemingly caused by the
variable ‘buffer’ being nulled too early.” 1

“So gTranscoder is getting reset or overwritten at some
point. Try setting a breakpoint on the variable to see
when it changed.”2

Such evidence reveals the importance and usefulness of
identifying the variables that are correlated with (or even
directly induced) the target fault for debugging in practice.
We denote such variables as the fault-correlated variables in
this study. Actually, it has already been pointed out that
fault-correlated variables are crucial for developers to
understand the fault, and also play a significant role in APR
techniques [11], [23]. Equipped with such knowledge,
developers can first check those variables with high suspi-
cious values to investigate whether their values or status
are expected during the debugging process, thus quickly

identifying the root cause and implementing a patch subse-
quently. Therefore, we are inspired to perform fault locali-
zation to identify fault-correlated variables, which is the
finest granularity in FL by far to our best knowledge.

However, locating fault-correlated variables precisely is
challenging. First, there are usually substantially different
variables defined or used in a program, and thus identifying
suspicious ones among them is non-trivial. Second, variables
in the same block can hardly be well discriminated. This is
because code elements in one block are always executed by
the same set of tests, and thus their suspicious values com-
puted by conventional spectrum-based techniques are the
same. Consequently, fault-correlated variables are often
ranked in tie with other irrelevant ones. As a result, existing
attempts which locate suspicious variables based on conven-
tional spectrum-based techniques (e.g., VFL [23]) can hardly
discriminate such cases. In addition, approaches which aim
to generate more tests or minimize tests, as adopted by causal
testing [22] and delta debugging [27], cannot handle such cases
effectively neither (see Section 2 for more details).

To overcome the aforementioned challenges, we propose
IsoVar, a novel approach aimed at effectively isolating
fault-correlated variables. IsoVar first identifies a set of sus-
picious variables via statistical analysis. Specifically, it
implements the concept of variable execution matrix, which
tracks the execution traces among different basic blocks for
each variable w.r.t. (i.e., with respect to) different executions.
In contrast to the spectrum constructed by traditional spec-
trum-based FL [28], [29], the variable execution matrix is
novel since it encodes the execution information from a
sequence of basic blocks that contains either definitions or
usages for each target variable. IsoVar then identifies a set
of suspicious variables via statistically analyzing the execu-
tion matrix constructed for different variables. Program var-
iables, even those in the same block, can therefore be better
differentiated since a variable is usually involved in multi-
ple basic blocks. Afterwards, IsoVar performs mutation
analysis to further isolate fault-correlated variables. Specifi-
cally, inspired by real debugging practices, IsoVar tries to
monitor the behavior changes of the program after slightly
mutating those suspicious variables at the bytecode level.
Different from causal testing [22], instead of mutating test
inputs, IsoVar directly modifies suspicious variables and
then executes tests to observe causal relationships and iso-
late fault-correlated variables. The intuition behind this
mutation analysis is that mutating the correlated variables will
cast higher impact on failing executions while with less impact on
passing ones, and vice versa for those variables that are not corre-
lated. Under such an intuition, IsoVar is able to isolate fault-
correlated variables precisely in the second phase.

To evaluate the effectiveness of IsoVar, we applied it to
real software bugs from the Defects4J [30] and Bears bench-
mark [31], which are widely adopted and evaluated in FL
and APR. The results show that IsoVar can significantly
outperform existing baselines with respect to different met-
rics. Specifically, the MAP and MRR can be improved by
13:0% and 19:3% on average, respectively. Moreover,
IsoVar can rank the fault-correlated variables at Top-1 for
93 cases while such a number is only 68 for the existing
baseline. With respect to Top-5 and Top-10, IsoVar can
rank the fault-correlated variables for 198 and 243 cases

1. https://issues.apache.org/jira/browse/DERBY-1727
2. https://issues.apache.org/jira/browse/XERCESC-1222
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while the performance achieved by the baseline is 171 and
229 respectively. To further demonstrate the usefulness of
IsoVar, we performed experiments to integrate the results
generated by IsoVar with 11 existing FL techniques at dif-
ferent granularities as well as 14 APR techniques to rank the
generated patches. The evaluation results are promising. In
particular, the performance of existing FL techniques can be
significantly boosted (i.e., the improvements of MAP range
from 16:7% to 218:8% and the improvements of MRR range
from 18:4% to 199:4%). For automated program repair, the
rank of corrected patches can be significantly improved,
and the precision of existing techniques can be improved
from 69:6% to 79:7%.

To sum up, this paper makes the following contributions:

� Originality: This study attempts to locate buggy code
elements at the variable level, which generates the
results at the finest granularity in FL so far. The nov-
elty of this study lies in proposing a new concept of
variable execution matrix and a set of new mutation
operators, specific to different variable types.

� Approach: We proposed IsoVar, which combines sta-
tistical and mutation analyses to isolate fault-corre-
lated variables. Specifically, IsoVar first identifies a
set of suspicious variables based on variable execu-
tion matrices, and then performs mutation analysis at
the bytecode level to isolate fault-correlated variables.

� Evaluation: We implemented IsoVar as an open-
source tool, and performed extensive experiments
to demonstrate its effectiveness (e.g., IsoVar can
improve MRR by 19:3% on average). The tool and all
experimental data are available at: https://github.
com/justinwm/IsoVar

� Application: The results generated by IsoVar at the
variable level can be incorporated into many applica-
tions (i.e., automated program repair) and enhance their
results significantly, which reflects its usefulness.

2 MOTIVATION AND BACKGROUND

2.1 A Motivating Example

Listing 1 shows a motivating example from the Defects4J
benchmark [30]. If the original program works normally, it
should throw IllegalArgumentException as expected. How-
ever, the program does not throw such an exception but fail
at line 475. In this bug (Time 4), the developer has used the
wrong constructor to create a Partial object since the original
constructor does not check the value of the variables. There-
fore, the constructed object newP, including its parameters
iChronology, newTypes and newV are highly correlated
with the bug. Both of the buggy and correct constructors are

syntactically valid, and thus such a problemwas impercepti-
ble to developers until abnormal behaviors were witnessed
during dynamic execution. We denote such variables
involved in such constructors as the fault-correlated varia-
bles w.r.t. this issue. When using traditional FL techniques,
such as Ochiai [29], to debug, the buggy statement (i.e., line
464 in org/joda/time/Partial.java) is ranked at a quite low
position, which is 30, as shown in Table 1. Such a result can
be of little use to developers in practice. The more advanced
FL techniques proposed recently cannot enhance the results
significantly. For instance, MCBFL [8] can only rank state-
ment 464 at position 20 while HSFL [7] can only rank the
buggy statement at position 33.

Listing 1. AMotivating Example of Time 4

However, if we debug from another perspective, which is
to inspect which variables are suspicious for introducing this
fault, the results could be more useful. Delta debugging was
proposed to identify suspicious variables that are relevant
for a failure via isolating cause-effect chains [27]. Given sev-
eral failing and passing test cases that are related to a bug, it
compares the state of variables (i.e., variable value) via mem-
ory graphs (see [32] for more details). It suspends the execu-
tion of the passing test, replaces the value of a variable of the
passing testswith the corresponding value from the identical
point in the failing test, and then resumes the execution of the
passing tests. Unless identical failure is observed, the vari-
able is no longer considered as suspicious. As a result, delta
debugging requires extensive additional test executions to
compare the variable states at different positions. In our
example, the failing test covers 1,671 lines of code and it does
not cause the program to crash, thus making the debugging
tool being unaware of the specific buggy position. Delta
debugging would theoretically compare program states and
repeat the above procedure at each position of the failing exe-
cution path. In addition, the execution of the program
involves plenty of complex loop structures so that thousands

TABLE 1
The Fault Localization Results Obtained at the Statement Level and Variable Level
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of states may exist during program executions, making it
particularly costly to finish the whole procedure. Gupta et
al [26] proposes to solve this problem by introducing the con-
cept of a failure-inducing chop. Specifically, it targets at iden-
tifying which part of the inputs in the failing tests are related
to the original failure, thus minimizing the failing tests.
However, in our example, all the inputs (i.e., test, DateTime-
FieldType.clockhourOfDay() and the “6” at line 474) are
related to the failure, and thus the failing test cannot be fur-
therminimized. Therefore, the overhead for delta debugging
cannot be reduced for this example. Driven by the above lim-
itations, we are seeking amore lightweight approach to iden-
tify suspicious variables.

In this paper, we propose IsoVar to isolate fault-corre-
lated variables efficiently and precisely. Table 1 shows the
results generated by IsoVar. As we can see, IsoVar can rank
the concerned variable iChronology at the second place and
other concerned variables at high positions. Such precise
results offered by IsoVar can bring the following two bene-
fits. First, it can provide developers with rich contextual
information to debug. Since we have directly pointed out
that variables newP and iChronology are significantly corre-
lated with this fault, developers can quickly know that the
usages toward these variables are buggy, thus determining
where the problem is and how to fix it. Second, such results
can boost the performance of existing debugging techniques
in reverse. Since IsoVar has pointed out that the usages of
variables newP, iChronology, and newV are correlated with
this issue, and they are all either defined or used at line 464.
Therefore, line 464 should bemore suspicious than the others
when performing fault localization at the statement level. Simi-
larly for APR, patches generated via modifying those cor-
rected variables should be more likely to be correct than the
others. Therefore, we conjecture that the effectiveness of
other debugging activities, such as FL and APR, can be
potentially enhanced if we are able to locate the buggy varia-
bles precisely (see Section 5 for more evaluation).

However, isolating such fault-corrected variables is non-
trivial since there are tens of different variables defined or
used in the surrounding contexts of this fault. A single vari-
able is usually involved in multiple basic blocks at different
locations. While such a situation incurs great challenges, it
brings new opportunities at the same time. We found that
the execution information of a variable at different basic
blocks forms a sequence of traces naturally, which can be
leveraged to differentiate suspicious variables from the
others through statistical analysis. Specifically, we can pin-
point those variables that are more frequently involved in
failing execution traces while less frequently in passing
ones. After applying this intuition based on our originally
designed variable execution matrix (see Section 3.1), the
four concerned variables (i.e., ichronology,newV,

newP,newTypes) can be ranked at 2, 13, 14 and 15 respec-
tively (i.e., the original rankings generated by Ochiai are 6,
15, 20 and 21 respectively). Furthermore, we also observe
that different variables will cast diverse degrees of impact
on the execution of the program. For instance, if we mutate
the variable newV, an Integer array, it will cast more impact
on the failing executions than the passing ones. After cap-
turing this intuition, IsoVar can further improve its ranking
from 13 to 10. In contrast, if we mutate other irrelevant

variables, opposite results are observed. Consequently,
such information can be leveraged to further differentiate
fault-correlated variables (e.g., newV in this example) from
the others. Therefore, it further motivates us to leverage
mutation analysis in isolating fault-correlated variables.

2.2 Variables in Fixing Patches

Critical variables that induce or are correlated with bugs are
essential for developers to debug. We aim to locate such
variables in this study while it is a challenging task. There-
fore, it motivates us to first understand the characteristics
(e.g., their types and distributions) of those bug correlated
variables, and the results of which can guide us to better
design fault localization tools.

In ordinary Object-Oriented Programming, variables can be
mainly categorized into several types, including Primitive,
String, Array, Objects and so on. Note that, in this study, we
use the Java programming language for illustration while our
approach can be easily adapted to other languages.We choose
Java since it remains to be one of themostwidely adopted lan-
guages over the years [33]. Particularly, Objects in Java can be
further categorized based on where the associated classes are
defined. For instance, they can be project specific objects (i.e.,
classes defined in the target project), JDK objects (e.g., Hash-
Map, List), and other objects fromThird-Party Libraries.

To demonstrate how frequently different types of varia-
bles are involved in the fixing patches, we conducted an
empirical study based on two datasets. One is Defects4J [30]
and the other is collected from large-scale open-source proj-
ects (e.g., Apache Flink, Lucene-Solr) by a recent study [34].
They contain over 1,000 fixing patches extracted from 7
open-source projects, and we denote it as the Large dataset
in this study. First, we observe that many different variables
are involved in fixing bugs. Specifically, it requires modify-
ing 5.38 different variables on average with a medium num-
ber of 3.00 to fix a Defects4J bug; and 22.7 different ones on
average with a medium number of 8.00 to fix a bug in the
Large dataset. The number is larger for the Large dataset
since its fixing patches are extracted from the commits
directly, which are often more complex than those in
Defects4J whose patches have been simplified [30].

Moreover, we observe that different types of variables are
frequently involved in fixing bugs as shown in Fig. 1. Specifi-
cally, the results show that variables defined by third-party
libraries are rarely used to fix bugs (i.e., accounting for less
than 1:0% in Defects4J and on average 7:6% in the Large data-
set). On the contrary, four types of variables (i.e., primitive,
String, Array, and project specific Objects) account for the
majority of variables to repair bugs with an average ratio of
87:3% (varying from 59:9% to 96:8% over different projects)
for Defects4J, and 68:2% for the Large dataset (varying from
54:0% to 90:8% over different projects). Such results indicate
that different types of variables, especially primitive ones
and project-specific objects are pervasively involved in bug
fixes, and thus the designed fault localization tool should
support all these different types of variables (see Table 3).

3 APPROACH

Fig. 2 shows the overview of our proposed approach Iso-

Var, which combines two phases, a statistical analysis phase
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based on variable execution traces and a mutation analysis
phase via analyzing the impacts of generated mutants. Spe-
cifically, given a buggy program with the associated test
suite (i.e., the failure triggering ones and passing ones),
IsoVar first identifies a set of suspicious variables based on
the execution traces of different variables. The basic intui-
tion of this step is that fault-correlated variables should be more
frequently involved in failing executions while less frequently
involved in passing ones.

Inspired by the practical debugging practices, IsoVar
then tries to mutate the identified suspicious variables subtly
via applying effective mutation operators at the bytecode
level. It observes the impacts of such subtle mutations on
program executions and further isolates the fault-correlated
variables precisely by comparing the execution traces of the
generated mutants and those of the original program. The
basic intuition behind is that the correlated variables should cast
more impact on failing executions while less on passing ones.
IsoVar finally isolates fault-correlated variables via integrat-
ing the statistical analysis and mutation analysis. We intro-
duce the details of each analysis as follows.

3.1 Statistical Analysis: Identifying Suspicious
Variables

IsoVar first aims to identify a set of suspicious variables for
the target fault based on the execution traces of both failing
and passing tests. Traditional spectrum-based FL techni-
ques construct execution spectra at the statement level.

Therefore, the coverage for a statement w.r.t. a specific test
execution only contains a single value, which represents the
number of times that the statement has been executed by
the execution.

However, a variable could be involved in multiple state-
ments across different basic blocks with either declarations
or usages (i.e., def or use), and each of these basic blocks may
be executed or not by a specific test. Therefore, the spectrum
constructed by existing techniques at the statement level
cannot fully reflect the execution traces for a single variable.
For instance, Table 2 shows an example of the execution
traces of a variable, where fi denotes a failing execution, pi
denotes a passing execution and bi denotes a basic block
that contains either the def or use of the variable. In this
example, the variable is involved in four basic blocks, and
the failing execution f1 has executed all these blocks twice
as shown in Table 2. On the other hand, the passing execu-
tion p1 has only executed basic block b4 six times. We denote
such an execution trace as the variable execution matrix in this
study, which can better reflect the extent to which the vari-
able has been executed for different tests.

However, existing techniques (e.g., Tarantula [28], Ochiai
[29]) cannot be directly adopted to such matrices to locate
faults at the variable level. This is because each variable con-
tains a sequence of information (i.e., the coverage information
of a sequence of basic blocks involving the target variable) w.
r.t. each test execution. In the above example as shown in
Table 2, w.r.t. failing test f1, the sequence information is Vf1 ¼
h2; 2; 2; 2i encoded in basic blocks b1; b2; b3; b4 respectively.
Such sequence information in Vf cannot be ignored if we aim
to locate fault-correlated variables precisely.

To fully utilize the sequence information encoded in vari-
able execution matrices, we compute the suspicious value
for each variable based on the following insights.

1) Freqf : the variable should be more frequently involved in
failing execution traces w.r.t. different basic blocks.

2) Freqp: the variable should be less frequently involved in
passing execution traces w.r.t. different basic blocks.

3) Simihf;pi: the execution trace concerning the variable
w.r.t. failing tests should be dissimilar with that w.r.t. passing
ones.

To fulfill the first two insights, we investigate the fre-
quency of a variable being executed by failing and passing
tests. Different from the traditional spectrum constructed
for statements by existing techniques, in which a statement
has rather simple status (a single value denoting the num-
ber of times being executed), the situation for the variable
matrix is more complex since a variable can be involved in

Fig. 1. The distribution of variable types. Object_P denotes project-spe-
cific Objects; Object_JDK denotes JDKObjects; while Object_D denotes
Objects from dependencies.

Fig. 2. Overview of IsoVar.
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multiple blocks as shown in Table 2. Therefore, we compute
the frequency of coverage instead of simply inspecting
whether the target variable has been executed by a test. Spe-
cifically, suppose a variable is involved in n basic blocks,
we measure the ratio by counting how many of such basic
blocks have been covered w.r.t. an execution. Formally,
Freqfi is computed as:

Freqfi ¼
P

vi2Vfi vi > 0 ? 1 : 0

jVfi j
: (1)

If there are multiple failing executions, the overall Freqf is
measured by their average value. Similarly, the frequency
of the variable participating in the passing executions can
be computed accordingly, and we denote it as Freqp.

To fulfill the third insight, we compute the similarities
between the execution traces of failing tests and passing
ones. For instance, between Vf and Vp as shown in Table 2.
Specifically, Simihf;pi is computed as follows:

Simihf;pi ¼
Pj¼1!m

i¼1!n CosineðVfi ; VpjÞ
n �m ; (2)

where n denotes that there are n failing test executions while
m denotesm passing ones.Wemeasure the average similarity
since it reflects how similar it is that the variable participates
in the executions w.r.t. failing tests and passing ones. Vfi ¼
hv1; :::; vi; :::; vni denotes the execution trace w.r.t. failing test
fi, and vi denotes that the ith basic block has been executed vi
times by fi. Accordingly, Vpj ¼ hu1; :::; ui; :::; uni denotes such
trace w.r.t. passing test pj. Their cosine similarity is computed
as follows:

CosineðVfi ; VpjÞ ¼
Pn

i¼1 vi � uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 v

2
i

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 u

2
i

p : (3)

The higher similarity, the less suspicious that the variable is
correlated with the failure.

To integrate the above insights, we first combine Freqf
and Freqp to investigate whether the variable is more fre-
quently involved in failing executions, and then integrate
Simihf;pi via weighted deduction since the larger similarity
as measured in Eq. (2), the less suspicious of the variable to
be correlated. Consequently, the final ranking formula is
designed as follows:

SuspðvÞ ¼ Freqf
Freqf þ Freqp

� a � Simihf;pi; (4)

in which a is the weight to integrate all these insights, and its
impact on IsoVar’s performance is investigated in Section 5.

3.2 Mutation Analysis: Isolating Fault-Correlated
Variables

The above stepmight identifymany different suspicious vari-
ables, and thus pinpointing fault-correlated variables pre-
cisely still remains a challenge. Therefore, IsoVar takes a step
forward to identify correlated variables via observing the
impact of each suspicious variable on the buggy program
dynamically, in particular, w.r.t. different test executions. The
intuition behind is that mutating the correlated variables will
cast higher impact on failing executions while having less
impact on passing ones, and vice versa for those irrelevant
variables. To achieve such a goal, IsoVar first designs a set of
mutation operators to apply simple transformation rules that
affect a singular variable at a time. IsoVar then measures the
impact of the mutant on both failing and passing tests. It
finally isolates fault-correlated variables via comparing the
trace similarities before and after applying the mutant. We
next present how IsoVar mutates programs w.r.t. suspicious
variables and how it observes and quantifies the impact of
suchmutations.

3.2.1 Effective Bytecode Mutation

IsoVar designs and applies mutation operators at the byte-
code level for efficiency since it does not require re-compil-
ing programs [35]. However, the difficulty of mutating
different types of program variables is diverse. In particular,
mutating int variables is simple and straightforward since
we can simply increase or decrease its values via utilizing
instructions iinc at the bytecode level.

In contrast, mutating Objects is more complex since it is
difficult to directly mutate its value. Instead, we need to iter-
atively mutate its fields. In the current implementation,
IsoVar supports themutation of four different types of varia-
bles, which are primitive, String, Array and project specific
Objects. As shown in Figs. 1a and 1b, these four types of var-
iables account for the majority of those involved in fixing
patches w.r.t. different projects. Variables of Objects from
JDK and other third-party libraries are not currently sup-
ported since mutating such variables requires analyzing the
associated libraries, which brings significant extra over-
heads. Compared to conventional mutation-based FL techni-
ques, the mutation analysis of IsoVar introduces the
following enhancements. First, IsoVar designs a set of new
mutation operators w.r.t. different types of variables. In par-
ticular, to mutate Object, it devises a novel algorithm (i.e.,
Algorithm 1) to iteratively search for mutable fields. Second,
the proposed mutation operators are designed at the byte-
code level, which further significantly enhances IsoVar’s
efficiency via avoiding repetitive compiling.

Table 3 presents the details of the operators, originally pro-
posed in this study, with the aim of mutating variables, in
rewriting rules. Each mutation operatorMðeÞ, where e is the
target expression to be mutated, is associated with a rule,
which is represented in the form of p ‘ e 7! e0. The rule
denotes that when the premise p holds, the target program
can be mutated via transforming a single instance of expres-
sion e to e0. In particular, we use notation tð�Þ to denote the
inference of the type information of a given expression or vari-
able. For basic data type, the operators mainly contain two
parts. First, we directlymodify its value slightly (e.g., negate a

TABLE 2
Execution Matrix for a Variable

Vf Vp

f1 f2 p1 p2 p3

Vb

b1 2 1 0 0 0
b2 2 0 0 1 0
b3 2 1 0 0 0
b4 2 0 6 2 4
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boolean variable or add a small number to byte, int) via insert-
ing extra instructions following the instructions of the target
variable (e.g., iinc for int). Second, we mutate the operators in
the assignment of a target variable (e.g., v = a + b! v = a - b if
v is the target variable). For String, we concatenate a char ran-
domly generated with the original variable. For a variable of
type Array, we mutate one element of it randomly selected
using the operators for the specific types. As for variable of
Object, we iteratively mutate its fields as shown in Algo-
rithm 1. IsoVar applies those defined mutation operators to
suspicious variables identified in the statistical analysis, and
then observes the impact of such suspicious variables.

Algorithm 1.Mutating Project Specific Object

Input: o: an input variable
Output: o0: a mutated variable
1 Q ho; 0i /* Using a queue to record the objects to

be mutated. The key is the object while the value

is the depth of the object to the target input

object.*/

2 while ! Q.isEmpty() do
3 entry Q.pop(); object entry:key
4 F  RetrieveFields(object)
5 foreach f 2 F do
6 if tðfÞ ¼ basic data type then
7 Mvðobject:fÞ; return object
8 end
9 if tðfÞ ¼ String then
10 Msðobject:fÞ; return object
11 end
12 if tðfÞ ¼ Object && entry:value < 4 then
13 Q:addðhf; entry:value þ 1iÞ
14 end
15 end
16 end

3.2.2 Impact Measurement

To isolate the most correlated variables w.r.t. a fault, IsoVar
quantitatively measures the impact of variable mutations as
follows:

fitnessðvÞ ¼ IfðmÞ � b � IpðmÞ;m 2 MðvÞ; (5)

where �IfðmÞ denotes the average impact of mutant m con-
cerning variable v w.r.t. the original failing tests, �IpðmÞ
denotes the corresponding impact w.r.t. the original passing
tests and b is the weight to integrate the above impacts.

To quantitatively measure the impact of mutantm w.r.t. a
test case, we compute the trace similarity between the test
execution before and after the mutant is applied as follows:

Execution Trace Similarity (Set): Similar to our previous
notations, let Vb ¼ hv1; :::; vi; :::; vni denote the execution
trace before the mutant is applied. Specifically, vi denotes
that the ith basic block has been executed by vi times. Accord-
ingly, Va ¼ hu1; :::; ui; :::; uni denotes such a trace after the
mutant is applied. We then use the cosine metric as defined
in Eq. (3) to measure the similarity between Vb and Va. A
higher similarity indicates that the mutated variable cast
less impact on the target execution, and thus the impact is
quantified as one minus the cosine similarity. Consequently,
following our intuition, a variable whose mutants preserve
lower similarities w.r.t. failing-revealing tests while preserv-
ing higher similarities w.r.t. the original passing tests is
more likely to be the fault-correlated variables.

IsoVar generates ten different mutants for each suspi-
cious variable unless fewer than ten mutants can be gener-
ated for the variable. For instance, for a boolean variable,Mv

might be unable to generate tenmutants as shown in Table 3.
IsoVar takes the average of the impact measured by
fitnessðvÞ over those mutants and denotes it as fitnessðvÞ.
IsoVar then takes g as the weight to incorporate such an
average impact with the original suspicious value as shown
in Eq. (4) tomake the final isolation of all suspicious variables
as follows:

isolationðvÞ ¼ SuspðvÞ þ g � fitnessðvÞ: (6)

4 EXPERIMENTAL SETUP

4.1 Subjects

We evaluate the effectiveness of IsoVar on the benchmarks
of Defects4j [30] and Bears [31]. These benchmarks con-
tain substantial real bugs extracted from large open-source
projects, and they were built to facilitate controlled experi-
ments in software debugging and testing research [30].
Defects4J has been widely adopted by recent studies on
fault localization and program repair (e.g., [8], [13], [14],
[36]). Bears is a benchmark to facilitate research in fault
localization and program repair in Java. These bugs were
collected from open-source projects hosted on GitHub via
scanning the build failures generated during the Travis
Continuous Integration. Following existing studies [6], [37],
we use all six projects in Defects4j of version 2.0.0with a total
of 395 real bugs and three projects in Bears of 125 real bugs
as the subjects for our experiments. Following an existing
study, we leverage the developer provided fixing patches to
approximate a bug’s root cause [38], and utilize those varia-
bles involved in the fixing patch as the correlated ones. That
is, the variables involved in the fixing patches are extracted
and served as the fault-correlated variables of the bug for
evaluation. The demography of the dataset is shown in
Table 4.

TABLE 3
Mutation Operators for Different Variables
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4.2 Measurements

To measure the effectiveness of IsoVar, we adopt the fol-
lowing three widely-used metrics in our study [4], [6], [37].

Top-N: This metric reports the number of bugs, whose
buggy entities (i.e., variables in this study) can be identified by
inspecting the top NðN = 1, 2, 3,...) of the returned suspicious
list. The higher the value is, the less effort required for develop-
ers to locate the bugs, and thus the better performance.

MAP: Mean Average Precision (MAP) [39] and Mean Recip-
rocal Rank (MRR) [40] are the most widely adopted metrics
to evaluate the effectiveness of FL [4], [7], [37], which
were originally proposed to evaluate information retrieval
queries. It takes all the buggy code elements into consider-
ation with their ranks when computing the metric. MAP is
computed by taking the mean of the average precision
scores across all bug reports. The average precision (AP)
of fault-correlated variables for one bug report is computed
as:

AP ¼
PM

k¼1 P ðkÞ � posðkÞ
#fault�correlated variables

; (7)

where k is the rank of the returned ranked variables,M is the
number of ranked variables and posðkÞ indicates whether the
kth variable is a fault-related one. P ðkÞ is the precision at a
given top k variable and is computed as:

P ðkÞ ¼ #fault�correlated variables in top�k variables

k
: (8)

MRR: MRR measures the multiplicative inverse of the
rank of the first buggy code elements identified while MAP
takes all the buggy code elements into consideration with
their ranks when computing the metric. In particular, MRR
is the mean of the reciprocal ranks over a set of bug reports
Q and it can be computed by 9.

MRR ¼ 1

Qj j
XQj j

i¼1

1

ranki
: (9)

where ranki is the position of the first fault-correlated vari-
able identified in the ith bug report.

When multiple variables have the same suspicious score,
we use the average rank to present their final rankings, fol-
lowing the strategy to handle the tie issues widely adopted
by existing fault localization techniques [6], [8], [41], [42].

4.3 Research Questions

We investigate the following research questions to evaluate
the effectiveness and usefulness of IsoVar.

� [RQ-1] To what extent do parameters affect the overall
effectiveness of IsoVar? In this RQ, we investigate the
impact of those parameters involved in the design of
IsoVar (e.g., a in Eq. (4) to combine the execution
frequency and cosine similarities). This RQ focuses
on how changes in parameters affect the effect of
IsoVar and their generalizability when applied to a
new project.

� [RQ-2] How effective is IsoVar in locating fault-corre-
lated variables? In this RQ, we investigate IsoVar’s
effectiveness as well as the contributions of statistical
analysis and mutation analysis. Specifically, we
apply IsoVar on the benchmarks, and then evaluate
its performance w.r.t. the above-mentioned three
evaluation metrics. We also compare IsoVar with
the state-of-the-art FL techniques that aim to locate
bugs at the variable level. Then, we further dissect
IsoVar’s performance w.r.t. different types of varia-
bles aiming to understand whether the performance
of IsoVar is significantly different on bugs with dif-
ferent characteristics.

� [RQ-3] How useful is IsoVar? In this RQ, we explore
the usefulness of IsoVar. IsoVar is designed from a
novel perspective (i.e., w.r.t. program variables)
which is different from existing studies, and thus it
is able to provide new knowledge and insights for
better debugging. Therefore, we investigate whether
the results provided by IsoVar can be integrated
with existing debugging techniques, such as FL and
APR, to enhance their performance.

4.4 Experiment Setting

4.4.1 RQ1

We inspect the impact of different parameters involved in
the design of IsoVar and the generalizability of the tool to
different benchmarks. We applied IsoVar to Defects4J and
Bears, and observed the impact of different parameter val-
ues on IsoVar’s performance. Specifically, for the parame-
ters a;b and g, we vary the value of such parameters from
0.0 to 1.0 with a step of 0.1, and then inspect and compare
IsoVar’s performance. Note that we first investigate the
impacts of a via merely considering the part of statistical
analysis. We then select the value of a that achieves the opti-
mum performance to investigate b with g set to 0.5. Finally,
we choose the optimum values of both a and b to investi-
gate g. Finally, we identify the optimal parameters for
Defects4J and Bears respectively and then explore and ana-
lyze the effect of such parameters on IsoVar with respect to
these two different datasets.

4.4.2 RQ2

Baseline: To the best our knowledge, VFL [23] is the only FL
technique that aims to locate faults at the variable level. The
original VFL is designed based on Ochiai while its concept
can be applied to all spectrum-based FL techniques that are
designed at the statement level. Therefore, we constructed

TABLE 4
Subjects for Evaluation

Subject #Bugs #Crashes KLOC Test KLOC Test Cases

Defects4J

Commons Lang 65 27 22 6 2,245
JFreeChart 26 11 96 50 2,205
CommonsMath 106 33 85 19 3,602
Joda-Time 27 10 28 53 4,130
Closure Compiler 133 17 147 104 7,929
Mockito 38 17 23 29 1,366

Bears

FasterXML 26 17 56 43 1,711
INRIA Spoon 57 22 40 33 1,114
Traccar 42 15 37 7 255

Total 520 169 534 344 24,557
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several variants of VFL based on different techniques (e.g.,
Tarantula, Barinel and so on), and then compared the per-
formance of IsoVar with VFL and its variants.

We did not include program state-based techniques [24],
[25], [26] as the baselines for comparison for the following
reasons. First, these techniques heavily rely on the delta
debugging technique [27], the aim of which is to identify the
minimized inputs that can trigger the failure. Second, thou-
sands of states may exist in program execution, and thus
the cost is also high [24]. Such extensive overheads limit
their practical usefulness to large-scale open-source proj-
ects. Third, these approaches are originally designed for C/
C++ projects, which is non-trivial to adapt for Java pro-
grams. Actually, The authors have provided a delta debug-
ging tool implemented in Java [43], but it has not been
maintained for over 16 years. This tool relies on Java 1.5 to
execute, which prevents us from applying it to projects
using higher Java versions. Therefore, we exclude them
from our baselines.

Note that to demonstrate the generalizability of our iden-
tified parameters across different projects while avoiding
the overfitting problem, we select the optimum parameters
obtained on Bears and apply them to Defects4J to investi-
gate IsoVar’s performance. Similarly, when evaluating Iso-
Var’s performance on Bears, we select and use the optimum
parameters obtained on the Defects4J dataset.

Different Types of Bugs: We compare IsoVar’s perfor-
mance over bugs correlated with different types of varia-
bles. Specifically, we inspect the ratio of objects involved in
the fixing patches of bugs, and then investigate whether the
performance of IsoVar will be affected by the ratio of corre-
lated objects.

4.4.3 RQ3

Enhancing FL: In addition to spectrum-based FL techniques,
there are several other families of FL techniques as summa-
rized by a recent study [9], which includes mutation-based,
slicing-based, stack trace-based, predicate switching-based, and
hybrid-based techniques. In this RQ, we select a wide range
of such FL techniques to investigate whether IsoVar can be
incorporated with them to enhance their performance. Spe-
cifically, as adopted by [9], we select Ochiai [44], DStar [45],
Metallaxis [46], MUSE [47] , Union [9], Intersection [9], Fre-
quency [9], StackTrace [48], and PredicateSwitching [49] since
they are the most representative techniques for each cate-
gory. We also select two recent state-of-the-art techniques, a
hybrid-technique, MCBFL [8] and a bug-inducing commits
driven technique, HSFL [7]. All the 11 techniques are
designed to locate faults at the statement level. Therefore,
for a target statement s, suppose the suspicious value com-
puted for it by an existing technique is suspðsÞ, we use the
following formula to refine such a suspicious value:

suspbðsÞ ¼ suspðsÞ þ Sv2VIsoVarðvÞ=jVj: (10)

where V denotes all the variables used or defined in state-
ment s and the IsoVarðvÞ denotes the suspicious value
returned by IsoVar for v. The idea is to enhance the original
suspicious value for a statement with the average suspi-
cious value of all the variables involved in the statement.
Note that if a fixing patch is to change an expression from

“a>b” to “a==b”, variables “a” and “b” will also be
regarded as the involved variables. We then evaluate the
results of suspbðsÞ and compare them with those returned
by suspðsÞ for each technique.

Enhancing APR: The overfitting problem is a long-stand-
ing open challenge for automated program repair [50], in
which case, the generated patches that pass the test suite are
incorrect but merely plausible ones overfitting to the test
suite. Plenty of approaches have been proposed aiming to
address the overfitting problem, specifically, to prioritize
correct patches over overfitting ones [11], [50], [51]. In this
RQ, we investigate whether the results provided by
IsoVar can help alleviate the overfitting problem. Our intui-
tion is straightforward, which is that those patches modifying
more fault-correlated variables are more likely to be correct instead
of plausible ones. Therefore, we utilize the results returned by
IsoVar to refine the ranking of all the patches generated by
existingAPR techniques as follows:

fitnessbðpÞ ¼ fitnessðpÞ þ Sv2VIsoVarðvÞ=jVj; (11)

where V denotes the set of variables involved in the patch p
and IsoVarðvÞ denotes the suspicious value for variable v
returned by IsoVar. Function fitnessðpÞ denotes the fitness
value computed by existing APR techniques (if any) to rank
the generated patches. Most APR techniques [35], [52], [53]
directly utilized the suspicious value of the statement where
the patch is generated to rank patches. For other techniques,
they devise certain heuristics to prioritize and rank patches.
For instance, CapGen [11] designed three heuristics measur-
ing the contexts information of patches to rank all the gener-
ated patches. We perform this experiment based on a
benchmark dataset RepairThemAll [54], which contains sub-
stantial patches together with their suspicious values and
ranks generated by 11 diverse APR techniques. The correct-
ness of such patches has been systematically labeled by
another study [55], which produces 886 correct patches and
593 plausible but incorrect ones on Defects4J. Note that it
takes one year for RepairThemAll to finish all the experi-
ments and collect the patch generation and ranking results
over the 11 APR tools, and thus it is infeasible for us to
incorporate other patch ranking strategies to reproduce the
results. Therefore, we directly utilize their ranking results
for comparison.

We also tried to include other state-of-the-art APR techni-
ques that utilize more advanced patch ranking techniques
while most of them are not public or not working as
revealed by an existing study [54]. Eventually, we further
include PraPR [35], TBar [56] and SimFix [57] in our experi-
ment. Specifically, for PraPR, we obtained all the patches
via re-executing the open-sourced tool and labeled each of
them manually via inquiring and confirming with the origi-
nal authors. For TBar, since the original authors have
already labeled whether the patches generated were correct
or plausible but incorrect, we directly utilize their results
for comparisons. As for SimFix, it fixes a bug until it finds a
patch that passes all the test cases or reaches five hours in
its original design. To verify whether IsoVar could help
SimFix prioritize the ranking of the correct patches, we
modified SimFix to allow it generate multiple patches for
each bug within the time budget of five hours. We marked
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whether a patch is correct by checking its semantic consis-
tencywith the patches provided by theDefects4J benchmark.

In addition to integrating our approach into existing
APR tools, we also compare with other state-of-the-art
approaches aiming at prioritizing patches to further eval-
aute IsoVar’s performance. Specifically, we compare with
ObjSim [58] and Patch-Sim [12]. ObjSim concerns the system
state at the exit point on passing and failing test cases to pri-
oritize correct patches, and has been shown to be able to
improve the ranking of correct patches generated by PraPR.
Therefore, we compare IsoVar with ObjSim with respect to
the patches generated by PraPR. For Patch-Sim, it accepts a
plausible patch that passes all test cases, and determines the
correctness of the patch by heuristic. Specifically, Patch-Sim
generates additional test cases to augment the original test
suite, and then runs the tests on both the original program
and the patched program. Finally, it determines patch cor-
rectness by comparing the behavioral similarity between
the two executions. We apply Patch-Sim to prioritize the
patches generated by TBar since it reports plausible patches
for the largest number of bugs as shown in Table 6. We con-
sider that Patch-Sim can help TBar correctly fix a bug if (1) it
identifies all incorrect patches that rank before the correct
patch as incorrect, and (2) it identifies the correct patch as
indeed correct.

We evaluate w.r.t. the following two metrics.

� Rankcorrect: the rank of the correct patches. A higher
rank denotes that it is more efficient to generate the
correct patches, and thus better results.

� Precision: the proportion of bugs correctly repaired
over all the bugs with plausible patches generated. A
bug is denoted as correctly repaired if there is at least
one correct patch that is ranked in prior to all the plausible
but incorrect patches [11], [50], [52].

Note that the RQ3 experiment was also performed with
parameters set to the optimum values discussed in RQ2.
When IsoVar performs on a new system for which it was not
possible to optimize the parameters in advance, IsoVar will
use the optimal parameters as discussed in RQ2 as the pre-
configured parameters.

5 EVALUATION

5.1 RQ1: Effect of Parameters

IsoVar combines statistical analysis and mutation analysis
to locate fault-correlated variables. Fig. 3 shows the impact
of different parameters on the performance of IsoVar w.r.
t. MAP and MRR, which reveal that different parameters
will indeed cast certain impact on IsoVar’s performance.

Specifically, for the results on Defects4J which are shown
in Fig. 3a, if we vary the value of a, theMAP of IsoVar varies
from 0.211 to 0.284 while the MRR varies from 0.245 to 0.326.
For both of the two metrics, IsoVar achieves the optimum
performance when a is set to around 0.5, b is set to around
0.9 and g set to around 0.1. For parameters of Bears which
are shown in Fig. 3b, when we change the value of a, the
MAP of IsoVar varies from 0.262 to 0.315 while the MRR
varies from 0.324 to 0.380.We observe a similar trend of a for
Defects4J and Bears as shown in Figs. 3a and 3b. Specifically,
the curve is going upward when the a is set to 0, and it

reaches the optimumwhen the value of alpha is set to around
0.4 to 0.5. Finally, the curve is going downward until a is set
to 1, Similarly, for b, we can also observe a common trend,
that is, the curve will slowly increase when it is set to the
value from 0 to 0.9 or 1 on both the two datasets. As for g, we
do not observe a clear common trend between the curves.
However, when its value is set between 0.1 and 0.5, IsoVar is
able to achieve relatively good performance.

In general, we found that the two metrics MAP and MRR
are very sensitive to a, and they can significantly affect the
performance of IsoVar. For instance, when the tool is
applied to Defects4J, the difference between the optimum
and worst value of MAP can reach 0.073 (0:284� 0:211). To
summarize, IsoVar performs relatively well when a is set
between 0.4 and 0.5, b is set between 0.9 and 1.0 and g is set
between 0.1 and 0.5. Such results reflect that the design of
all the components in IsoVar is necessary, which signifi-
cantly affects the final performance of IsoVar. However,
their importance might be different as they contributed dif-
ferently to the overall performance. For instance, the opti-
mal value of b is close to 1, demonstrating that the effects of
mutants on the original failing tests are more important to
help locate fault-correlated variables than those on the pass-
ing tests. The optimum value of g around 0.1 to 0.5 also
reveals that the contribution of statistical analysis stage out-
weighs that of the mutation analysis stage.

5.2 RQ2: Effectiveness of IsoVar

To investigate IsoVar’s performance while avoiding the
potential overfitting problem, we select the optimum param-
eters achieved on Bears and apply them to Defects4J.
Similarly, when evaluating the performance on Bears, we
use the optimum parameters obtained on Defects4J. Table 5
shows the performance of IsoVar on different projects
w.r.t. different metrics and the according comparisons with
VFL. Specifically, we listed the results of IsoVar obtained via
including only the statistical analysis and including both the
statistical and mutation analyses (i.e., denoted as IsoVars
and IsoVarsm respectively). We also showed the results of
three variants of VFL [23] based on Ochiai, Tarantula and
Barinel (i.e., we selected such three variants since they

Fig. 3. Impacts of different parameters.
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achieved the optimum performance). The results show that
IsoVar outperforms existing state-of-the-art w.r.t. different
metrics for all cases.

With respect to Defects4J, the MAP and MRR have been
improved by 5:6% on average (varying from 1:5% to 18:2%)
and 15:2% (varying from 1:8% to 31:2%) respectively com-
pared with VFLochi. With respect to Top-N, IsoVar can iden-
tify the fault-correlated variables at Top-1 for 67 bugs, and
the number are 149, and 177 for Top-5, and Top-10 respec-
tively. In regard to the baseline, it can only locate the fault-
correlated variables at Top-1, Top-5, and Top-10 for 43, 128,
and 170 cases, respectively. For Bears, the MAP and MRR
improved by 42:7% on average (varying from 23:8% to
87:9%) and 32:2% (varying from 4:6% to 90:1%) respec-
tively compared with VFLochi, which achieved the opti-
mum among the baseline variants. IsoVar can also
identify the fault-correlated variables at Top-1, Top-5,
and Top-10 for 26, 49, and 66 cases respectively. Such
results demonstrate the superiority of IsoVar over exist-
ing baselines.

In Table 5, we also present the contributions of the two
analyses separately. The results show that both analyses con-
tribute significantly to the final performance of IsoVar. Spe-
cifically, if we only consider the statistical analysis, the MAP
and MRR can be enhanced by 6:0% and 22:5% respectively.
After integrating the mutation analysis, the improvements
over baselines can be further enhanced to 10:8% and 27:2%
respectively. Such results also reflect the generalizability of
our approach since the tuned parameters are utilized in a
cross project manner. Specifically, applying the parameters
tuned on Defects4J can still lead IsoVar to achieve superior
performance on the Bears dataset. Moreover, such results

also indicate that the overhead of parameter tuning is limited
since the involved parameters only need to be tuned in a one-
shot manner, and can be generalized and utilized in other
projects.

We further investigated the performance of IsoVar
w.r.t. bugs with different ratios of Object fault-correlated
variables and non-Object ones (i.e., basic type, String and
Array). Fig. 4 shows the results, which also depicts the trend-
ing linesmeasuring the relationship between the performance
of IsoVar and different types of variables. The results reveal
thatwith the increase of the ratio of non-Object correlated vari-
ables in the bug, IsoVar can also achieve better results w.r.
t. MAP and MRR. However, the opposite trend is observed
for Object correlated variables as shown in Fig. 4. Such results
indicate that IsoVar is more effective in locating fault-corre-
lated variables of non-Objects. This might be caused by the
fact that mutating Objects is more complex and tricky, and
thus their impact on the whole program can hardly be pre-
cisely observed and quantified.

5.3 RQ3: Usefulness of IsoVar

5.3.1 Enhancing FL

We compare the original results of existing FL techniques (in
total 11 different ones from 7 families) and the boosted results
after incorporating the results at the variable level based on
Eqs. (10). Fig. 5 shows the average results over 357 bugs3 in
Defects4J w.r.t. MAP and MRR. The results show that
IsoVar can boost the performance for all the existing techni-
ques. Specifically, the improvement w.r.t. MAP ranges from
16:7% to 218:8% over different techniques, and thatw.r.t.MRR
ranges from 18:4% to 199:4%. Moreover, w.r.t. different sub-
jects, the performance can all be boosted significantly (such
results w.r.t. subjects are not displayed due to page limit).
Take HSFL, which achieves the optimum results among exist-
ing techniques, as an example, the MAP has been improved
by 17:5%, 21:3%, 18:8%, 15:7% and 4:6% w.r.t. subjects Time,
Chart, Math, Lang and Closure respectively. Accordingly, the
improvementsw.r.t.MRR are 17:5%, 31:2%, 22:4%, 23:5% and
8:0% respectively. Such results demonstrate the usefulness of

TABLE 5
The Performance of IsoVar And VFLwith Respect to Different Metrics

MAP MRR Top-1 Top-5 Top-10

Projects VFLochi VFLtar VFLbar IsoVars IsoVarsm Imp% VFLochi VFLtar VFLbar IsoVars IsoVarsm Imp% VFLoch IsoVarsm VFLoch IsoVarsm VFLoch IsoVarsm

Time 0.238 0.268 0.265 0.251 0.267 12.2% 0.252 0.252 0.251 0.321 0.330 31.0% 3 4 8 13 15 15
Chart 0.319 0.295 0.337 0.366 0.377 18.2% 0.317 0.254 0.295 0.380 0.416 31.2% 4 6 13 14 14 15
Lang 0.422 0.387 0.410 0.447 0.451 6.9% 0.415 0.359 0.375 0.485 0.486 17.1% 15 18 33 38 38 43
Math 0.265 0.254 0.272 0.270 0.274 3.4% 0.258 0.234 0.251 0.291 0.295 14.3% 12 17 39 40 50 48
Closure 0.154 0.121 0.152 0.162 0.160 3.9% 0.180 0.146 0.171 0.210 0.201 11.7% 12 14 25 34 39 42
Mockito 0.269 0.246 0.250 0.250 0.273 1.5% 0.271 0.239 0.242 0.275 0.276 1.8% 7 8 10 10 14 14

FasterXML 0.140 0.105 0.204 0.241 0.263 87.9% 0.181 0.162 0.252 0.321 0.344 90.1% 3 5 8 11 12 15
Spoon 0.151 0.103 0.148 0.184 0.187 23.8% 0.238 0.159 0.212 0.242 0.249 4.6% 7 10 19 18 22 23
Traccar 0.273 0.200 0.296 0.382 0.384 40.7% 0.316 0.271 0.298 0.385 0.427 35.1% 5 11 16 20 25 28

Summary 0.239 0.211 0.244 0.264 0.270 13.0% 0.259 0.220 0.247 0.302 0.309 19.3% 68 93 171 198 229 243

VFLochi, VFLtar and VFLbar denote the variants based on Ochiai, Tarantula and Barinel. IsoVars: results of statistical analysis; IsoVarsm: results combining two
analysis. The MAP and MRR in the Summary row indicates the weighted average, with the weight being the number of bugs per project.

Fig. 4. Performance w.r.t. object and non-object variables. The trending
line is also measured as displayed.

3. Bugs fromMockito are excluded since our experiments in this RQ
were built based on an existing study [9], that excluded Mockito.
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IsoVar, which can significantly boost the performance of
existing FL.

5.3.2 Enhancing APR

We compare the original results of 14 existing APR techniques
and the boosted results after incorporating the results at the
variable level based on Eq. (11). The key to overcoming the
overfitting problem is to enhance the rank of correct patches,
and prioritize them over all plausible but incorrect patches.
Fig. 6 shows the resultsw.r.t. the rank of corrected patches. Spe-
cifically, the rank of all correct patches generated by all the
selected techniques can be significantly improved from an
average rank of 791.0 to 522.9 (the median rank is improved
from 71 to 43.5)with a p-value of 0.043.

Table 6 shows the results w.r.t. the number of correct
patches that are ranked prior to all incorrect patches, and
the number of bugs that can be correctly repaired. We com-
pare the results, for each technique, based on the original
ranks generated by the technique, and the new ranking
based on the boosted fitness value for each patch as shown
in Eq. (11). Actually, for all 14 APR tools, 7 of them have no
room for improvement since they have already ranked the
correct patches prior to all other plausible ones. For the
other 7 tools, IsoVar can effectively improve their precision.
Specifically, 49 (950-901) more correct patches can be ranked
before all plausible but incorrect ones. Moreover, 10 (139-
129) more bugs can be correctly repaired, thus enhancing
the precision from 76:8% (=129/168) to 82:7% (=139/168)
among those repairing results as shown in Table 6.

As aforementioned, we compare IsoVar with ObjSim to
improve the ranking of correct patches generated by PraPR.
In our experiments, PraPR generated plausible patches for
33 bugs, of which the ranking of correct patches for 6 bugs
can be boosted by IsoVar or ObjSim. The ranking of the cor-
rect patches for the other 27 (33-6) bugs could not be
boosted by either of the tools. Table 7 lists the detailed rank-
ing results of the 6 bugs that can be improved while the full
results are shown on our online website. In particular,
IsoVar has improved the ranking of correct patches for four

bugs (with the ✓ as shown in Table 7) and the correct
patches of two bugs have been ranked at the first place.
ObjSim has improved the ranking of correct patches for
three bugs and two of them have been ranked 1st. In terms
of the average ranking of correct patches for all the 33 bugs,
ObjSim reduced the average ranking from 3.71 to 3.77 since
it has degraded the ranking of correct patches for certain
bugs. In contrast, IsoVar reduces the average ranking of
correct patches from 3.71 to 3.42 averaged over the 33 bugs.
Such results reflect the effectiveness of our proposed
approach in prioritizing correct patches, which can benefit
future APR researches.

We also compare IsoVar with Patch-Sim to prioritize the
correct patches generated by TBar. Overall, Patch-Sim can
help TBar correctly fix one more bug and IsoVar achieves
the same results (see the TBar row in Table 6). However,
Patch-Sim is more costly than IsoVar since it usually takes
5 to 10 minutes to identify the correctness of a single plausi-
ble patch. For example, TBar generated 296 plausible
patches for Math-50, and the correct patch was originally
ranked at the 215th place. Consequently, it will take plenty
of time for Patch-Sim to prioritize the correct patches. In
contrast, IsoVar spends 7 minutes in identifying the fault-
correlated variables, and the results can be utilized to priori-
tize the correct patches with limited overhead.

Typically, an APR tool will first locate the fault, which
identifies a set of suspicious statements, and then generates
patches via applying predefined repair templates. The sus-
picious values of these patches generated in the same loca-
tion are often the same since they often share the same
contexts. Therefore, even if a correct patch can be generated,
it is difficult to efficiently differentiate it from the other
plausible patches. In contrast, IsoVar can identify correct
patches more effectively via measuring howmany fault-cor-
related variables are involved in the patches, thus improv-
ing the precision of APR techniques. Such results indicate
that IsoVar reveals a promising direction to address the

Fig. 5. Boosting the performance of FL techniques.

Fig. 6. The rank of correct patches.

TABLE 6
Patch Prioritization for Existing APR Techniques

APR Tool #CP #CPBP #CPBPb #Bugs #Bugsc #Bugsbc

Cardumen [15] 3 3 3 3 3 3
jMutRepair [14] 4 4 4 4 4 4
NPEFix [59] 4 0 1 1 0 1
Nopol [13] 3 3 3 3 3 3
Arja [60] 774 764 767 7 6 7
DynaMoth [61] 2 2 2 2 2 2
GenProg [53] 45 3 36 3 1 3
JGenProg [14] 3 3 3 3 3 3
jKali [14] 2 2 2 2 2 2
RSRepair [16], [60] 43 13 20 6 5 6
Kali [17], [60] 3 3 3 3 3 3

PraPR [35] 39 17 19 33 17 19
TBar [56] 80 55 56 68 54 55
SimFix [57] 33 29 31 30 26 28

Total 1,034 901 950 168 129 139

#CP denotes the total number of correct patches. #CPBP denotes the number of
correct patches that are prioritized before all plausible but incorrect patches
while #CPBPb denotes such a number boosted by IsoVar.
#Bugs denotes the total number of bugs with plausible patches generated.
#Bugsc denotes the total number of bugs that are correctly repaired while
#Bugsbc denotes such a number using the boosted fitness value in Eq. (11).
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overfitting problem in APR via inspecting the divergence of
the concerned variables. Such an idea is new to the APR com-
munity, which is orthogonal to other more advanced patch
ranking strategies. Therefore, our idea can be easily integrated
with existing studies to further boost their performance.

6 DISCUSSION

6.1 Threats to Validity

In this study, the oracle information (i.e.,the fault-correlated
variables) used to evaluate the effectiveness of IsoVar is
extracted from the fixing patches following the strategy
adopted by existing studies [38]. However, such a strategy
might be biased since the variables such extracted might not
represent the real fault-correlated variables of the bug. Nev-
ertheless, it is the best practice we can take to perform large-
scale evaluations. In the future, we plan to perform in-depth
case studies to refine such oracle information and then
inspect the performance of IsoVar.

6.2 Limitations and Future Work

IsoVar can only be applied to those bugs that are related to
program variables (i.e., 92:0% = 478/520 in our experiments).
There are also other software issues that are caused by config-
urations, documentation, and so on. For such cases, IsoVar is
inapplicable. In the future, we will explore how to adapt our
idea to a wider range of applications. Our evaluation results
reveal that IsoVar can boost the performance of existing
debugging techniques. This is because IsoVar works from a
novel perspective, which is program variables, to facilitate
debugging.

Although promising results have been achieved, many
enhancements can be made. First, the strategies adopted to
incorporate IsoVar and existing techniques are simple. We
will explore how to better incorporate IsoVar with existing
techniques in the future. Second, different program variables
are actually not independent. Instead, they are highly corre-
lated by different relations (e.g., control-flow relations, data-
flow relations and call/callee relations), and whether such
relations can guide us to better prioritize and isolate fault-
correlated variables is worth exploring. Third, different
types of variables are likely to trigger different types of
faults. For example, Objects are often correlated with Null-
PointerExceptions while Arrays often trigger OutOfBound-
sException. Therefore, it is important to consider the types of

bug symptoms to isolate fault-correlated variables precisely.
We left such explorations as our important futurework.

6.3 Overheads of IsoVar

Overhead Analysis: Table 8 shows the average overheads of
IsoVar for each project. In general, depending on the com-
plexity of the target project and the number of associated
test cases, IsoVar is able to complete the statistical analysis
within a few minutes (varying from 0.91 to 4.12 minutes on
average), and additional a few minutes for the mutation
analysis (varying from 0.86 to 5.15 minutes). For the addi-
tional memory overhead required by the tool, depending on
the size of the project under test and the complexity of the
test cases, IsoVar requires additional memories of around
100M to 500M to store the matrix as mentioned in Sec-
tion 3.1, which is roughly equivalent to the memory con-
sumption of spectrum-based fault location techniques such
as Ochiai.

Among all these projects, Closure takes the longest time
for IsoVar to analyze since the size of Closure is the largest.
Specifically, it contains 147k lines of code and 7,929 test
cases, which is far more than that of the other projects. The
complexity of the test cases in Closure is also another
important reason that degrades IsoVar’ efficiency. In partic-
ular, a test of Closure can include more than one thousand
functions on average, while each test case of the other proj-
ects only involved dozens of functions. Such results indicate
that IsoVar, with its high efficiency, is practical to be
applied into open-source projects, even for large-scale ones.
Note that we perform the mutation analysis in parallel
when measuring its efficiency. In particular, the process to
apply mutations (up to 10) for each variable and then exe-
cute the test suite is independent for each variable, and thus
we can perform the mutation analysis in parallel to reduce
the overheads.

Scalability Constraint: We also observe that IsoVar’s scal-
ability can be significantly affected by certain tests, which
may consume a large amount of memory or time. For exam-
ple, some tests are designed to evaluate whether the program
will throw an exception as expected after a timeout while
IsoVar needs to run these tests multiple times in the muta-
tion phase. Such abnormal behavior may cause IsoVar to
consume excessive resources. To alleviate the limitations of
IsoVar’s scalability, we monitor which test is resource-con-
suming, andwill skip it in themutation phase (about 15 bugs
have encountered this problem in our dataset). Note that all

TABLE 7
Comparison of Prioritizing Correct Patches Generated

by PraPR Between IsoVar and ObjSim

Bugs #PP #CP IsoVar ObjSim

Before After Before After

Time-11 39 1 4 3 ✓ 4 4
Lang-59 2 1 2 1 ✓ 2 2
Math-58 2 1 2 2 2 1 ✓
Math-82 9 1 8 1 ✓ 8 2 ✓
Closure-31 6 1 6 3 ✓ 6 Timeout
Mockito-29 2 1 2 2 2 1 ✓

#PP denotes the total number of plausible patches that pass all test cases. #CP
denotes the total number of correct patches. Before reports the best rank of cor-
rect patch among other plausible patches while After reports the such a rank
boosted by IsoVar or ObjSim.

TABLE 8
Average Overheads of IsoVar For Each Project

Time-overhead (mins)

Projects Statistical Analysis Mutation Analysis IsoVar

Lang 1:06� 0:23 1:25� 0:83 2:15� 0:55
Chart 1:19� 0:12 1:01� 0:15 1:91� 0:25
Math 4:26� 0:42 2:95� 1:50 6:51� 2:31
Time 0:91� 0:22 0:86� 0:16 1:97� 0:81
Closure 3:97� 1:12 5:15� 3:33 8:67� 4:18
Mockito 1:23� 0:21 1:21� 0:95 2:14� 1:01

jackson-databind 2:01� 1:18 2:21� 1:95 4:72� 1:58
Spoon 3:12� 2:11 4:84� 1:45 7:96� 3:01
Traccar 3:23� 1:56 1:93� 0:56 5:12� 2:18
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the other mutation-based FL techniques also face the same
problem, and we will continue to investigate how to better
address such scalability constraints in the future.

6.4 Parameter Auto-Tuning

To simplify the process of automatic parameters tuning, we
implemented a program to automatically identify the opti-
mal parameter setting (i.e.,a, b and g). We utilize the inter-
mediate results associated with each variable to perform the
automated tuning of parameters (i.e.,Freqf , Freqp, Simihf;pi
in Eq. (4) and IfðmÞ, IpðmÞ in Eq. (5)). We only need to run
IsoVar once since we logged the variable suspicious values
along with the corresponding intermediate results. The
detailed process is described as follows. (1) As aforemen-
tioned, the three parameters take values from 0 to 1, and
we iterate through all possible values with the step of 0.01
(e.g., a ¼ 0:50, b ¼ 0:95, g ¼ 0:20). (2) Then we utilize the
intermediate results associated with each variable to re-cal-
culate the suspicious values and evaluate the MAP and
MRR under the current parameters setting. (3) Finally, the
optimal setting of parameters that maximizes MAP+MRR
will be outputted. According to our experiments, this pro-
cess can be completed within 30 seconds.

7 RELATED WORK

7.1 Automated Fault Localization

Automated Fault Localization is a white-box debugging tech-
nique that aims to identify code elements (e.g.,methods, state-
ments) that are likely to cause the target fault. Various FL
techniques have been proposed such as spectrum-based tech-
niques (e.g., [6], [62], [63], [64]), mutation-based techniques
(e.g., [47], [65], [66]), slice-based techniques (e.g., [67], [68]),
machine-learning based techniques (e.g., [69]), program-state
based techniques (e.g., [49]), data-augmented (e.g., [70]), feed-
back-based (e.g., [71]), and qualitative reasoning-based tech-
niques (e.g., [72]) to facilitate developers in locating faults.

Spectrum-based and mutation-based ones are the two
types of techniques that are most similar to this work. How-
ever, existing techniques mainly focus on locating buggy
code elements at the method or statement level. In contrast,
we explore the fault localization at the granularity of pro-
gram variables in this study. To the best of our knowledge,
this is by far the finest granularity in FL. VFL is the most
relatedwork to this study [23], which also tries to locate bugs
at the variable level. However, it leverages the traditional
spectrum constructed for statements while ignoring the
sequence information of variables proposed by this study.
Experiments show that our approach IsoVar outperforms
VFL significantly, which reflects the effectiveness of our pro-
posed variable execution matrices, and the mutation operators
aiming tomutate various types of variables.

7.2 Automated Program Repair

Automated Program Repair (APR) is another important
debugging activity, which has recently been extensively
researched [11], [13], [14], [15], [35], [53], [60]. Diverse muta-
tion operators have been proposed, either manually based
on heuristics [35], [53] or automatically via mining substan-
tial fixing patches [11], [14], with the aim to generate more
correct patches. However, the overfitting problem is a long-

standing open challenge for APR [50], in which case, the
generated patches that pass the test suite are incorrect but
merely plausible ones overfitting to the test suite.

Plenty of approaches have been proposed to address the
overfitting problem, specifically, to prioritize correct patches
over overfitting ones [50]. Ghanbari et al. proposed ObjSim
[58] to prioritize the correct patches generated by PraPR [35].
As aforementioned, it concerns the system state at the exit
point of passing and failing test cases to prioritize correct
patches and ObjSim can be integrated into PraPR to boost its
performance. Xiong et at. [12] proposed Patch-Sim to deter-
mine the correctness of plausible patches that pass all test
cases. The authors observe that the failing tests on the original
and patched programs are likely to behave differently while
the opposite behavior is observed in the executions of passing
tests. Based on the observation, they utilize the behavior simi-
larity of test case executions to exclude incorrect patches.

Our proposed approach differs from the above techniques.
First, we consider the program variables since they are essential
to program ingredients in the process of patch generation
(e.g., the adoption ofmutation operators and synthesis of pro-
gram entities). Moreover, IsoVar identifies fault-correlated
variables within 10 minutes on average and the results can be
utilized to better prioritize all the generated patches effi-
ciently. In contrast, Patch-Sim usually takes 5 to 10minutes to
identify the correctness of a patch, making it costly to process
multiple plausible patches generated by APR tools. Such an
idea is similar to the recently proposed unified debugging
which has pointed out that FL and APR can boost the perfor-
mance of each other [73]. However, we are the first to propose
leveraging the information of fault-correlated variables to
enhance APR, and our experiments as shown in Section 5.3
have shown promising results. Therefore, we believe it is a
promising andworth-exploring research direction.

8 CONCLUSION

Program variables are important information for developers
to debug. Developers often set breakpoints at specific loca-
tions or execute the program step by step, and then monitor
concerned program variables to see if abnormal values or
status will be witnessed. Therefore, isolating fault-corre-
lated variables is important. Motivated by this, we propose
IsoVar, which combines statistical analysis and mutation
analysis with the aim to isolate fault-correlated variables.
Extensive experiments on Defects4J and Bears show that
IsoVar can outperform existing techniques significantly.
More importantly, we further made attempts to incorporate
IsoVar with other existing debugging techniques, including
11 FL techniques and 14 APR techniques, and found that
IsoVar can significantly boost the performance of existing
techniques.
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