
Precise and E�icient Patch Presence Test for Android
Applications against Code Obfuscation

Zifan Xie∗†

Huazhong University of Science
and Technology, China

xz�@hust.edu.cn

Ming Wen∗†‡

Huazhong University of Science
and Technology, China
mwenaa@hust.edu.cn

Haoxiang Jia∗†

Huazhong University of Science
and Technology, China
haoxiangjia@hust.edu.cn

Xiaochen Guo∗†

Huazhong University of Science
and Technology, China

xiaochenguo@hust.edu.cn

Xiaotong Huang†

Huazhong University of Science
and Technology, China
zoyy@hust.edu.cn

Deqing Zou∗†

Huazhong University of Science
and Technology, China
deqingzou@hust.edu.cn

Hai Jin∗§

Huazhong University of Science
and Technology, China

hjin@hust.edu.cn

ABSTRACT

�ird-party libraries (TPLs) are widely utilized by Android develop-

ers to implement new apps. Unfortunately, TPLs are o�en su�ering

from various vulnerabilities, which could be exploited by a�ack-

ers to cause catastrophic consequences for app users. �erefore,

testing whether a vulnerability has been patched in target apps is

crucial. However, existing techniques are unable to e�ectively test

patch presence for obfuscated apps while obfuscation is pervasive

in practice. To address the new challenges introduced by code obfus-

cation, this study presents PHunter, which is a system that captures

obfuscation-resilient semantic features of patch-related methods

to identify the presence of the patch in target apps. Speci�cally,

PHunter utilizes coarse-grained features to locate patch-related

methods, and compares the �ne-grained semantic similarity to de-

termine whether the code has been patched. Extensive evaluations

on 94 CVEs and 200 apps show that PHunter can outperform state-

of-the-art tools, achieving an average accuracy of 97.1% with high

e�ciency and low false positive rates. Besides, PHunter is able to

be resilient to di�erent obfuscation strategies. More importantly,

∗Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research
Center on Big Data Security, National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System Lab, Cluster and
Grid Computing Lab, Huazhong University of Science and Technology (HUST)
†School of Cyber Science and Engineering, HUST.
‡Corresponding author
§School of Computer Science and Technology, HUST.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . .$15.00
h�ps://doi.org/10.1145/3597926.3598061

PHunter is useful in eliminating the false alarms generated by ex-

isting TPL detection tools. In particular, it can help reduce up to

25.2% of the false alarms with an accuracy of 95.3%.

CCS CONCEPTS

• So�ware and its engineering→ So�ware libraries and reposito-

ries; • Security and privacy→ So�ware security engineering.

KEYWORDS

Android Security, Patch Presence Test, Library Detection

ACM Reference Format:

Zifan Xie, MingWen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing

Zou, and Hai Jin. 2023. Precise and E�cient Patch Presence Test for Android

Applications against Code Obfuscation. In Proceedings of the 32nd ACM

SIGSOFT International Symposium on So�ware Testing and Analysis (ISSTA

’23), July 17–21, 2023, Sea�le, WA, USA. ACM, New York, NY, USA, 13 pages.

h�ps://doi.org/10.1145/3597926.3598061

1 INTRODUCTION

Android Applications (Apps) have dominated the market share

of apps for smartphones nowadays. In particular, the number of

available apps has recently reached 2.89 million in the Google Play

Store [26]. One major reason that contributed to the massive suc-

cess of Android is its open-source ecosystem, which has a�racted

active contributions from many developers. Consequently, there

are massive emerged third-party libraries (TPLs) with all kinds of

functionalities, which can be further utilized by developers to facil-

itate the development of new Android apps. TPLs account for an

average of more than 60% of the code in Android apps [35]. Many

apps even rely on over 20 distinct TPLs [21, 40, 46].

Unfortunately, TPLs o�en su�er from various vulnerabilities,

and 74.95% of vulnerable TPLs are widely utilized by apps or other

TPLs [44]. Consequently, the extensive usages of TPLs enable at-

tackers to exploit TPLs’ vulnerabilities, thus might cause severe

consequences for app users [10, 32, 33]. For instance, the recently

spo�ed vulnerabilities in Apache Log4j2 [20], have a�ected more

347

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598061
https://doi.org/10.1145/3597926.3598061
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598061&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing Zou, and Hai Jin

than 35,000 Java packages, amounting for over 8% of the Maven

Central Repository [25] (i.e., the most important Java package repos-

itory). Until 17th December 2021, nearly 5,000 a�ected artifacts have

been �xed. However, over 30,000 a�ected artifacts still have no �x-

ing patches, many of which depend on other artifacts to be patched

(transitive dependencies), thus blocking prompt remediation [30].

Due to the pervasiveness of such critical vulnerabilities in TPLs and

their extensive usages in developing apps, it is crucial to understand,

especially for App vendors (e.g., Google Play) and those users who

have high demands of security (e.g., governments, security service

providers), the absence/presence of vulnerable libraries or code in

apps, thus protecting end-users from known threats.

Driven by such practical needs, plenty of library version detec-

tion approaches have been proposed to automatically detect TPLs

and the corresponding versions contained in an app recently [11, 19,

21, 29, 44, 48, 49]. For instance, LibPecker [49] takes class dependen-

cies as code features, encodes dependency graphs as a set of fuzzy

class signatures and then calculates the Jaccard similarity between

the library and application signatures to detect library with versions.

ATVHunter proposed a two-phase detection method, leveraging

features based on control-�ow graphs and opcode in basic blocks

to identify speci�c TPL versions via matching a pre-constructed

TPL database [44]. Despite the promising performance achieved,

the e�ectiveness and usefulness of such existing approaches are

greatly compromised in real scenarios, in which apps are o�en ob-

fuscated. In particular, a recent study reveals that 24.9% of the apps

are obfuscated before releasing to the market among 1.7 million

free Android apps from Google Play [39]. Such a ratio rises up to

50.0% for popular apps with over 10 million downloads [39].

�e limitations of existing approaches in such real scenarios

mainly come from two aspects. First, they cannot detect the en-

closed TPLs with versions precisely once the app has been obfus-

cated. Although some approaches [19, 21, 49] claim to resist certain

obfuscation strategies, they usually report many false positives

at the version-level for obfuscated code [44]. Second, their gener-

ated results are very coarse-grained. Particularly, if they identify

a TPL with the version information in the app, they will query

the NVD [34] and report alarms if the version lies in the a�ected

version range of an existing CVE. However, such alarms might be

incorrect since the library utilized by the app can actually be secure

(e.g., the related vulnerable code has been patched or the vulnerable

code has been removed during code obfuscation via the strategy

of removing unused code). �erefore, it motivates the researches of

patch presence test to spot such false alarms, which works at a

�ner granularity and aims to check whether the speci�c patch for

a known CVE exists in the target artifact [7, 15, 47]. �e behind

intuition is to compare the similarity between the pre-/post- patch

reference and the target artifact concerning their semantics. Unfor-

tunately, we found that existing patch presence test approaches are

also ine�ective once the code has been obfuscated.

In this study, we aim to test the presence of patches of speci�c

CVEs in real Android apps, which are o�en obfuscated. However,

code obfuscation brings signi�cant challenges for this task since the

code features between the obfuscated code and the original one can

be exceptionally di�erent (see Listing 1a for a concrete example). For

instance, identi�ers, including methods and variable names cannot

be matched due to identi�er renaming strategy. Besides, speci�c

obfuscation strategies will also induce plenty of redundant code

via adding substantial local variables, constraints and redundant

function calls (e.g., see Integer.parseInt() in Listing 1c at Line

14 for a concrete example). Consequently, existing approaches that

rely on the line-to-line mapping between the reference patch and

the target artifact (e.g., BScout [7]) are infeasible. Actually, existing

approaches cannot locate the patch related methods in the �rst

step since they rely on identi�ers while such semantics have been

changed to meaningless le�ers (e.g., “abc”), let alone to examine

the presence of patches precisely.

To tackle the above challenges, we present PHunter in this paper.

�e core novelty and insight of PHunter is to extract obfuscation-

resilient features at both the coarse-grained and �ne-grained

levels to compare patches’ semantics, thus capturing their pres-

ences. In the coarse-grained step, PHunter identi�es patch-related

methods in obfuscated apps through fuzzy comparisons, in which

only the type information is utilized to represent the signature of a

method or a �eld. A�er obtaining a set of candidate patch-related

methods, PHunter performs �ne-grained semantic comparisons at

the program path level. �e core insight is that if all the paths af-

fected by the reference patch also exist in the target obfuscated code

with the same or similar semantics, it is likely that the vulnerability

patch is present. PHunter utilizes the information of predicates,

method invocations and critical variables along the path to sum-

marize its semantics (i.e., path summary). Unfortunately, without

matched identi�ers, it is hard to compare semantic similarities pre-

cisely. �erefore, PHunter proposes to re-express local variables

and predicates as expressions consisting of only constants, param-

eters, �elds, function calls, etc via tracing the def-use chains of

the concerned variables. Besides, it also leverages non-obfuscable

information (e.g., the constructor’s name) to help recover certain

obfuscated variable names aiming to further enhance the precision

(i.e., type recovery). Finally, PHunter performs semantic similarity

comparisons among the extracted paths to report patch presence.

To evaluate the e�ectiveness and e�ciency of PHunter, we com-

piled 200 apps that involve 31 common TPLs with 94 known CVEs,

and each app involves at least one vulnerable TPL. �en we col-

lected the corresponding a�ected versions for each TPL by query-

ing NVD [34] as the oracle. We obfuscated these apps with Pro-

guard [24], DashO [8], Allatori [1], Obfuscapk [2] to evaluate the

obfuscation-resilient capabilities of PHunter. Finally, we compare

it with four baselines, including LibScout [4], LibPecker [49], Li-

bID [48], BinXray [43] and ATVHunter [44]. Our results show that

PHunter achieves the optimum performance even for unobfuscated

apps with an accuracy of 97.1%. As for apps obfuscated by Proguard,

DashO, Allatori and Obfuscapk, the improvements w.r.t. accuracy

are 0.8%, 21.0%, 8.4% and 5.8%, respectively. More importantly, our

evaluation also demonstrates that the major components employed

in this study can contribute signi�cantly to the promising perfor-

mance of PHunter. Besides, the results also show that PHunter is

e�cient, and can complete the entire analysis process within four

minutes while achieving a high degree of accuracy for most cases.

�e precise results achieved by PHunter are very useful, in par-

ticular, in eliminating the false alarms generated by TPL detection

approaches. Existing approaches usually identify the vulnerable

348

Precise and E�icient Patch Presence Test for Android Applications against Code Obfuscation ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

libraries in apps, and then generate a warning for each vulnera-

bility contained in the app to report that the app might be threat-

ened [11, 29, 44, 48, 49]. However, such results might be imprecise

as aforementioned. Given such generated warnings, PHunter can

make further in-depth analyses for each vulnerability to investigate

whether the vulnerable methods exist in the app or whether the

vulnerable code has been patched. A controlled experiment shows

that existing approaches generate a high false alarm ratio ranging

from 3.7% to 25.2%, while PHunter can successfully identify such

false positives with a high accuracy of 95.3%. We further performed

a large-scale �eld study on the top 10,000 popular apps on Google

Play, and found that PHunter can help spot around 15.5% of the

false alarms, thus reducing manual e�orts of security analysts.

To summarize, we make the following major contributions:

• Originality.We are the �rst to target testing the presence

of vulnerability patches in obfuscated Android applications.

• Approach.Weproposed an approach based on coarse-grained

fuzzy comparisons and �ne-grained semantic comparisons

at the path level to test patch presence of known vulnerabil-

ities in obfuscated apps. �e designed obfuscation-resilient

semantic features are the key novelty that enables our ap-

proach to resist code obfuscation.

• Evaluation. We implemented our approach as a prototype,

named PHunter. Extensive evaluation shows that it can test

patch presence precisely and e�ciently, which also outper-

forms the state-of-the-art signi�cantly. More importantly,

extensive experiments also demonstrate that PHunter is use-

ful in eliminating false alarms of existing approaches.

• Artifact.We open-sourced our approach and released our

collected dataset of vulnerability TPLs, including the patches

and the corresponding apps, thus facilitating future researches.

All the artifacts can be accessed at:

https://github.com/CGCL-codes/PHunter

2 BACKGROUND AND MOTIVATION

2.1 App Obfuscation

Code obfuscation is widely used by app developers to prevent re-

verse engineering, making it harder for a�ackers to decompile

and exploit vulnerabilities through existing analysis tools. Nearly

24.92% of 1.7 million free Android apps on Google Play are obfus-

cated before release [39]. In this study, we use four popular obfus-

cators: Proguard [24], DashO [8], Allatori [1], and Obfuscapk [2].

Proguard, integrated with Android Studio, shrinks bytecode and

obfuscates class, �eld, and method names, and is widely used by

developers [23]. DashO and Allatori are mature commercial prod-

ucts o�ering strong code protection and have been extensively

studied [5, 9, 13, 37, 45]. Obfuscapk [2], an open-source obfuscator

from academia, supports advanced features like control-�ow ob-

fuscation. Table 1 summarizes the obfuscation strategies used by

these four obfuscators, which can be easily con�gured with various

options. Detailed explanations of each strategy can be found on our

website [38] due to page limitations.

2.2 Existing Approaches

Detecting vulnerable TPLs and checking whether the vulnerable

code has been patched have aroused huge research a�ention re-

cently [4, 7, 15, 41, 44, 47–49], which are summarized as follows:

Table 1: Supported Obfuscation Strategies for Obfuscators

Obfuscation strategy Proguard DashO Allatori Obfuscapk

Code Shrinking ✓ ✓ ✗ ✗

Package Fla�ening ✓ ✓ ✓ ✗

Identi�er Renaming ✓ ✓ ✓ ✓

Control Flow Obfuscation ✗ ✓ ✓ ✓

String Encryption ✗ ✓ ✓ ✓

✓:support; ✗: not support

Library Version Detection. Intuitively, suppose a tool can ac-

curately identify the version of the TPLs used in an app, one can

directly query NVD [34] whether the version of the TPL is vul-

nerable. Driven by this, plenty of tools have been developed to

pinpoint TPLs, along with the speci�c versions, in apps. For in-

stance, LibScout [4] is a similarity-based library identi�cation tool,

which generates fuzzy signatures for each method by using place-

holder X to replace non-JDK identi�ers to obtain method signatures.

LibPecker [49] takes class dependencies as code features. Instead

of matching the dependency graphs, it encodes the graph as a set

of fuzzy class signatures and calculates the Jaccard similarity be-

tween the library and application signatures. Although LibScout

and LibPecker are resistant to identi�er renaming, they cannot

resist code shrinking and package �a�ening since they rely on the

package hierarchy. LibID [48] overcomes several limitations of the

previous studies. Speci�cally, it constructs the CFG, utilizes �ner

granularity features at the basic block level, and combines class

dependency to identify TPLs. However, LibID assumes that most

obfuscators will not a�ect the internal package hierarchy structures.

�is strong assumption directly compromised its e�ectiveness, thus

making it ine�ective to detect obfuscated TPLs.

Patch Presence Test. Patch Presence Test aims to infer whether

a binary contains the patch for a speci�c vulnerability. BScout [7]

utilizes the debug information (e.g., variable names or line numbers)

contained in the Java bytecode to generate line-to-line mappings be-

tween the pre-patch/post-patch source code and the target bytecode.

A�er generating the mappings, BScout archives patch presence test

by calculating the similarity between the target binary and both

the pre-patch and post-patch reference. PDi� [15] is another ad-

vanced approach that performs patch presence test for downstream

Linux kernels. It then enumerates the method paths, extracts their

semantics, and determines the presence of patches based on path

similarity. BinXray [43] generates patch signatures by di�ng pre-

patch/post-patch functions via matching basic blocks. Finally, the

patch signatures are used to match the target functions to determine

whether they have been patched or not. Unfortunately, the above

tools fail to resist various obfuscation strategies. For instance, for

the most basic strategy of identi�er renaming, all the debug infor-

mation will be eliminated, and thus the mappings used by BScout

cannot be constructed. Moreover, the strategy of control �ow obfus-

cation can further break code structures and make it challenging for

PDi� and BinXray to capture the patch semantics. �erefore, more

e�ective and obfuscation-resistant semantic information needs to

be extracted to resist code obfuscation.

2.3 Challenges and Insights
It is challenging and time-consuming to analyzewhether the patched

code exists in the targeted artifacts if they have been obfuscated.

349

https://github.com/CGCL-codes/PHunter

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing Zou, and Hai Jin

1 public void parseCentralDirectoryFormat(

2 byte[] data, int offset,int length) –

3 // ...

4 if (this.rcount ¿ 0L) –

5 this.hashAlg=HA.getAlgorithm(getValue(data,offset+12));

6 this.hashSize=getValue(data, offset + 14);

7 - for (int i = 0; i ¡ this.rcount; i++){

8 + for (long i = 0; i ¡ this.rcount; i++){

9 //...

(a) Patch Snippet of CVE-2018-1324

1 public void c(byte[] bArr, int i, int i2) –

2 // ...

3 if (this.u1 ¿ 0) –

4 this.v1 = t00.b.a(g20.a(bArr, i + 12));

5 this.w1 = g20.a(bArr, i + 14);

6 for (long j = 0; j ¡ this.u1; j++)–

7 // ...

(b) Patch Snippet of CVE-2018-1324 Obfuscated by Proguard.

1 public void c(byte[] bArr, int p1, int p2) –

2 int j;

3 long l1;

4 String str = ”9”;

5 //Omit 40 lines of code, including 6 if-else statements

6 if (this.u1 ¿ 0L) –

7 if (j != 0) –

8 j = sf1.a(bArr, p1 + 12);

9 str = ”0”

10 ˝ else –

11 j = sf1.a(bArr, p1 + 8);

12 str = ”1”

13 ˝

14 if (Integer.parseInt(str) == 0)

15 this.v1 = qc1.b.a(j);

16 this.w1 = sf1.a(bArr, p1 + 14);

17 for (long j2 = 0; j2 ¡ this.u1; j2++)–

18 //...

19 ˝

(c) Patch Snippet of CVE-2018-1324 Obfuscated by DashO.

Listing 1: Patch of CVE-2018-1324 and the Obfuscated Code Snippets

Listing 1a shows the patch for CVE-2018-1324 [6], a vulnerabil-

ity in Apache Commons Compress, which has been widely utilized

by Android applications. �e patch snippet modi�ed a single line,

which replaces int with long. �e root cause of this vulnerabil-

ity is that this.rcount is a long type �eld. �erefore, a�ackers

can cra� specialized Zip archives to cause an in�nite loop when

this.rcount exceeds the max value of Integer, which can be

exploited to mount a denial of service a�acks [3]. �e code obfus-

cated by Proguard and DashO is shown in Listing 1b and Listing 1c

respectively. �e main challenges are summarized as follows.

First, the identi�er names are unmatched. As shown in List-

ing 1b, the names of method and variable have been changed

(e.g., parseCentralDirectoryFormat was changed to c), and

the mappings between those variables cannot be easily constructed.

Consequently, it is hard to identify the patch-related methods since

the code semantics cannot be directly compared, let alone the

patched code snippets (i.e., line 6 in Listing 1b). �erefore, we are

motivated to leverage coarse-grained features to identify patch-

related methods in a fuzzy way. Besides, we further represent local

variables as expressions consisting of only constants, parameters,

�elds, and function calls via tracing its def-use chains to resist code

obfuscation (see Section 3.2.2). Second, obfuscation will introduce

extra code semantics. For instance, the obfuscators o�en construct

dummy copies of basic blocks (e.g., lines 11-12 in Listing 1c is a

dummy copy of lines 8-9) or inject redundant and unnecessary

code elements (e.g., function calls such as Integer.parseInt()).

Consequently, coarse-grained semantic comparisons (e.g., at the

method level) are incapable of capturing the vulnerability related

semantics precisely. �erefore, it motivates us to make precise com-

parisons at the program path level, thus enabling us to examine

whether the target artifact’s paths consume the patch related ones

while ignoring those extraneous codes introduced by obfuscation

(see Section 3.3). Lastly, code obfuscation may introduce the path

explosion problem. For instance, if we unroll the loop once, the

obfuscated code as shown in Listing 1c contains over 200 di�erent

paths, compared to only 4 in the original code. Actually, Listing 1a

only shows a very simple patch. As the original patch’s complexity

increases, the number of paths in the obfuscated method will grow

exponentially. �erefore, we propose to trim infeasible paths to

further boost the analysis e�ciency (see Section 3.2.3).

3 APPROACH

�is study presents PHunter to address the above challenges, and

Figure 1 shows the overview. PHunter takes the pre-patch/post-

patch TPL (i.e., the “.jar” or “.aar” compiled from the source code

before/a�er applying the patch respectively), the patch �le, and

the target app as inputs. It then automatically identi�es whether

the patch is present in the target app. To equip PHunter with the

capability of obfuscation resilience, the key insight is to extract

obfuscation-resilient semantics to compare the app’s semantics

with the patch/post-patch TPL. Our proposed obfuscation-resilient

semantics mainly include coarse-grained fuzzy signatures consid-

ering the type information and �ne-grained path summaries with

re-expressed predicates and variables. PHunter is composed of three

steps: Locating Candidate Methods, Path Extraction & Trimming and

Path Summary & Comparison, which are described as follows.

3.1 Locating Candidate Methods

PHunter takes the following three steps to locate the patch-related

method in the �rst step, which is crucial for patch presence test.

3.1.1 Coarse-Grained Feature Extraction. By parsing the patch

source �le, we can easily locate the patch-related methods in TPLs.

However, the obfuscators may rename all user-de�ned identi�ers

in the target app. �us, identi�er-irrelevant features need to be

extracted to locate the patch-related methods in the obfuscated

app. Inspired by previous works [48, 49], PHunter constructs the

call graph for the app and collects coarse-grained features, which

include:

Method Fuzzy Signature: PHunter uses a method’s return

type and parameter types to represent its signature inspired by

LibScout [4]. For user-de�ned classes, PHunter uses a placeholder X

to replace it. For instance, for a method with the prototype of “void

fun(int p0, MyClass[] p1)”, its extracted fuzzy signature is

“void,int,X[]”.

Callers and Callees: PHunter integrates the callee and caller

information, similarly in a fuzzy way, of a method as its fuzzy

signature. �rough the call graph, it records all the callees and

callers in two sets named (callee and (caller, respectively.

Accessed Field: PHunter records the type for each accessed �eld.

Similar to the method’s fuzzy signature, it uses a placeholder X to

replace user-de�ned classes. For example, for a �eld with prototypes

350

Precise and E�icient Patch Presence Test for Android Applications against Code Obfuscation ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

The Patch (.diff)

TPL’s Repository
Pre-patched TPL

(.jar/.aar)

Post-patched TPL
(.jar/.aar)

Compile

The Target App (.apk)

Pre-process Locating PatchedMethods

• Decompiling

• Coarse-grained Feature Extraction

• Locating Candidate Methods

Path Extraction & Trimming

• Path Extraction

• Predicate & Variable Re-expression

• Path Trimming

Path Summary & Comparison

• Type Recovery

• Similarity Computation

• Patch Presence Report

Predicate

Method Call

Critical Variable Compare

Method#1

Method#2

Method#n

Obfuscated

Figure 1: Overview of PHunter

of “MyClass f2”, it has the fuzzy signatures of “X”. All the accessed

�elds in the method are denoted as a set (�eld.

3.1.2 Locating Patch-Related Methods. PHunter aims to locate

methods in the app that correspond to those patch-related methods

in the TPL as candidate methods. Specially, given a patch-related

method in TPL with the fuzzy signature, and the corresponding

features (
tpl

callee
, (

tpl

caller
and (

tpl

�eld
, it traverses all the methods in the

app to compute its similarity with the TPL as follows:

(8<coarse =

�

�

�

�

(
tpl
callee

⋂

(
app
callee

�

�

�

�

+

�

�

�(
C?;

caller

⋂

(
app
caller

�

�

� +

�

�

�

�

(
tpl
�eld

⋂

(
app
�eld

�

�

�

�

�

�

�

�

(
tpl
callee

�

�

�

�

+

�

�

�

�

(
tpl
caller

�

�

�

�

+

�

�

�

�

(
tpl
�eld

�

�

�

�

(1)

�e intuition behind is such coarse-grained features (callees,

callers, and �elds accessed) can re�ect important semantics of a

method. �erefore, all the methods with the same fuzzy signature

as the patch-related method and whose similarity computed by

Equation 1 exceeds a prede�ned)ℎA4Bℎ>;32>0AB4 are selected as

the candidate methods. We performed a preliminary study to select

such a threshold, which is described in Section 5.1.

Note that if none of the candidate methods exist, we will termi-

nate the whole process and report the patch is not present. �ere

are three main reasons: (1) the app uses a lower version of the TPL,

and thus the patch-related method has not yet been introduced; (2)

the patch-related method originally exists in the TPL but has been

removed due to di�erent reasons such as Code Shrinking; or (3) the

app does not use the TPL.

3.2 Path Extraction & Trimming
Given a candidate method, PHunter further extracts �ne-grained

information on path constraints, function calls, and critical vari-

ables (�elds and array type variables) to summarize the method’s

semantics. �e semantics must be obfuscation-resilient, meaning

we cannot rely on any identi�ers, line numbers, etc. Figure 2 shows

how PHunterworks for Listing 1c (lines 17-27).�e CFG of the code

snippet and partial results of each step are presented in Figure 2(a)

and Figure 2(b), respectively. Details are as follows:

3.2.1 Path Extraction. PHunter treats the CFG as a directed cyclic

graph and adopts a depth-�rst search algorithm to traverse all

paths of the method. For example, there exists a feasible path

P3={..,a,b,d,e,f,g,m} which passes through three predicates

at nodes a○, d○ and g○ and ends with a return statement at node
m○. Note that due to the presence of loops, we restrict each edge

(jumps between basic blocks) to pass at most once in a path follow-

ing existing studies [15, 27].

3.2.2 Variable & Predicate Re-Expression. Catering to the needs

of capturing obfuscation-resilient semantic features, we devise a

…
j2++;

return;

if (j2 < this.u1)

k

m

this.v1 = a(j);

a if (j != 0)

j=a(bArr,p1+12)
str=“0”

...

c

d

e

g

b

if(Integer.parseInt(str)==0)

this.w1 = a(bArr, p1+14);
long j2 = 0;

f

Step 1: Path Enumeration
P1={…,a,c,d,e,f,g,m}

P2={…,a,c,d,e,f,g,k,g,m}

P3={…,a,b,d,e,f,g,m}

P4={…,a,b,d,e,f,g,k,g,m}

…

Step 2: Predicate Re-expression

A1:

A2:

A3:

Step 3: Path Trimming
A1:always True => trim P1,P2

A2,A3 : cannot resolve

assume j = 10

T=Constant
D=“int#0”

T=Constant
D=“int#10”

T=Comparator
D=“!=”

T=Invoke
D=“int,String”

T=Constant
D=“int#0”

T=Comparator
D=“==”

T=Constant
D=“String#0”

T=Constant
D=“int#0”

T=BinOprator
D=“cmp”

T=Comparator
D=“<”

true false

true

false

false

true

T=Constant
D=“long#0”

T=Field
D=“wy.be1#long”

(a) CFG for target (b) Path Extraction

a

d

g

j=a(bArr,p1+8)
str=“1”

Figure 2: Path Extraction, Predicate Re-expression and Path

Trimming for the Example in Listing 1c (lines 7-18)

novel Tree Structure to represent variables and predicates based on

the following insights. First, instead of using the traditional source-

level or AST representation of expressions with identi�er names

(e.g., if(a ⩾ 0)), we need to abstract away certain detailed infor-

mation (e.g., identi�er names), thus obtaining obfuscation-resilient

capability. Second, all the local variables and predicates can be

eventually evaluated as expressions consisting of only constant,

parameters, �elds, and function calls via tracing the def-use chains

of the concerned variables.�erefore, for all the expressions de�ned

in the Backus-Naur Form (BNF) of Jimple [14, 31], we group them

into several types of nodes as shown in Table 2, and each node

contains two a�ributes: ExprType and Data. ExprType denotes the

expression type while Data records certain obfuscation resilient

information, such as the type of the concerned variables or speci�c

operators. Leaf nodes include Constant, Parameter, Field, and those

that cannot be further represented. Accordingly, non-leaf nodes can

be broken down into leaf nodes. For example, for compare expres-

sions (e.g., x > y), PHunter uses Comparator as their ExprType

with the operator symbol (i.e., >) as their Data. Such nodes contain

two children, representing the le� and right operands of the opera-

tor, respectively. For the leaf node of type Field, instead of recording

351

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing Zou, and Hai Jin

the speci�c �eld name, its Data records the DeclaringClass with

the declared types as “MyClass#Long”.

Table 2: De�nition for NodeType, Data of the Tree Structure

ExprType Data Example

Comparator Comparator symbols. “>”, “⩾”, “==”, “!=”, etc

BinOperator Binary operators. “+”, “-”, “*”, “/”, etc.

UnaryOperator Unary operators “lengthof”, “-”(negative sign)

InstanceOf Speci�c class name Suppose a statement is “v instanceof MyClass”,
and its Data is “MyClass”

Invoke �e return type and param-
eter types

Suppose the framework function “startsWith
(String a)” is called, its Data is “boolean,String”

Array �e base type of the array. An array with the long type, its Data form is
“long[]”

Constant★ Constant types with values. A long type constant with value 15 is repre-
sented as “long#15”

Class★ Name of the class. “MyClass”

Parameter★ Index of the target
method’s parameters.

Suppose the prototype of the target method is
“public void fun(MyClass p1, int p2)”, then p1 is
“1”, p2 is “2”

Field★ DeclaringClass with the de-
clared types.

A long type �eld declared in the MyClass.java,
its Data form is “MyClass#long”

CaughtException★ An unique string for
CaughtException

“@caughtexception”

★ denotes leaf nodes.

Based on such designs, along a speci�c path, PHunter constructs

the tree structures for all the variables and predicates. Specially, it

�rst extracts all the assign statements and predicates along the path

(i.e., denoted as list �=CA), and also creates a map to record the tree

structures (i.e.,M) for each variable. It then iterates �=CA one by one.

When encountering an assignment, PHunter constructs a tree for

the assigned variable and record it inM. In particular, if the right

side of the assignment involves other local variables, it iteratively

replaces these variables with the corresponding tree structures via

checking withM until they can all be appropriately represented

by leaf nodes. When encountering a predicate, PHunter constructs

a tree structure based on its expression type as shown Table 2,

and it also replaces all local variables with the corresponding trees

stored inM. Figure 2(b) shows the three predicates involved in

path P3 at nodes a○, d○ and g○ and the corresponding created tree

structures. We denote them as A1, A2 and A3 in order. For instance,

for the third predicate A3, Soot [28] converts the predicate “j2 <

this.u1” to “i0 < 0”, where the int-type temporary variable i0

is assigned to “j2 cmp this.u1” (cmp is the opcode of Jimple).

PHunter represents local variable j2 by the tree node with Ex-

prType as “Constant” and Data as “long#0” (as marked it in red).

However, in the pre-patch version, the Data of the node is “int#0”,

which re�ects the di�erence between the pre-patch and post-patch

versions, and such di�erence can be captured by the Tree Editing

Distance Algorithm [22] based on our devised tree representation

(see Section 3.3.2). Without such �ne-grained obfuscation-resilient

semantics, the subtle di�erences cannot be captured.

3.2.3 Path Trimming. As all variables and predicates will be re-

expressed along a speci�c path, and the value of certain predicates

can be evaluated. For those predicates in which all leaf nodes are

with the ExprType of Constant, PHunter will try to resolve them

to remove infeasible paths. Such cases are pervasive since the ob-

fuscators o�en utilize simple strategies to introduce redundant

constraints. As a result, many redundant predicates only involve

constants. �e path trimming strategy will help alleviate the path

explosion problem. For example, for the �rst predicate A1, since 10

!= 0 is always evaluated to be true, we trim the path that goes

through false (i.e., from node a○ to c○). Consequently, P1 and

P2 can be removed.

3.3 Path Summary & Comparison

PHunter utilizes the summaries of a set of paths to represent a

method’s semantics. It ensures that the same path can obtain similar

path summaries before and a�er obfuscation. Speci�cally, we use

constraints, function calls and critical variables along a speci�c path

as its �ne-grained summaries, which are introduced as follows:

Path Constraints. �e path constraints are recorded orderly as

a list of predicates, and we represent each predicate as a tree. As

aforementioned, each tree node contains two a�ributes: ExprType

and Data, which captures obfuscation-resilient features.

Function Calls. For each function call, we record its fuzzy sig-

nature (the return type and the argument type) as a list.

Critical Variables. Inspired by existing works [15, 41], we

record the types of �eld and array variables sequentially as a list.

For each �eld, we record its declaringClass name and type

(e.g., ob.be1#long). For the array variable, we record its type

(e.g., int[]).

3.3.1 Type Recovery. We observe that there exist non-obfuscable

information, which can be leveraged to help recover partial ob-

fuscated names. Speci�cally, the constructor’s name <init> (con-

structor’s names in binary are compiled as <init>) of each class

will not be obfuscated. �erefore, we can map the types in the con-

structor arguments before and a�er obfuscation, thus recovering

certain identi�ers. For example, there is a patch-related method in

TPL that contains a constructor in its declaringClass with the

prototype <init>(Myclass1 p1). Suppose there is an obfuscated

candidate method whose declaringClass also contains a con-

structor with the prototype <init>(ob.a b1,ob.b P2). If the

similarity of these two constructors exceeds the)ℎA4Bℎ>;3coarse,

we can infer that Myclass1 is renamed as ob.a.

�en, we utilize this map to try to recover obfuscated identi�ers

in the path semantics, including function return types, function

parameters types, �eld’s declaringClass names and �eld’s types.

If an obfuscated identi�er cannot be recovered, PHunterwill replace

it with a placeholder X.

3.3.2 Similarity Computation. We consider the average similar-

ity of path constraints, function calls and critical variables as the

similarity metric for path summaries.

Similarity of Path Constraints. Constraints are represented

as tree structures. We utilize Tree Edit Distance (TED) [22] to ob-

tain a minimal-cost sequence of node edit operations required to

transform one tree into another. To achieve such a goal, we need

to de�ne the edit operations costs, including “insert”, “delete” and

“modify”. Our insight is straightforward. If two nodes match exactly,

no edit is required, and thus the cost is 0. If two nodes do not match,

either the ExprType or Data, we need one full edit to make them the

same, and thus the cost is 1. Otherwise, if two nodes fuzzily match,

it only requires half of the operation to make them the same (i.e., the

edit cost is thus 0.5). For insert and delete operations, the cost is 1.0.

In particular, given two predicates �1 and �2, we calculate their

similarity as follows:

B8< (�1, �2) = 1/(1 +)�� (�1, �2)) (2)

352

Precise and E�icient Patch Presence Test for Android Applications against Code Obfuscation ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

To compute the similarity between two lists !1={�1, �2, . . . , �<}

and !2={�
′
1, �
′
2, . . . , �

′
=}, PHunter’s intuition is to identify the op-

timized ordered matches between the elements in !1 and !2 to

maximize the similarity. In particular, PHunter implements a Dy-

namic Programming as shown in Algorithm 1 to achieve the goal,

in which <0CA8G [8, 9] records the maximum similarity between

the two sub-lists [�0,…, �8] and [�′0,…, �
′
9]. �e �nal similarity

B8<(!1, !2) is computed as as<0CA8G [<,=]/<.

Algorithm 1: Similarity Maximization

input : two lists of elements, !1 = {�1, �2, . . . , �< } and
!2 = {�

′
1, �
′
2, . . . , �

′
= } // assume that !2 is shorter than !1

output : similarity of the lists, B8< (!1, !2)
1 <0CA8G ← q // initialize matrix to 0

2 for 8 = 1 to< do
3 for 9 = 8 to = −< + 8 do
4 <0CA8G [8, 9] =<0G (<0CA8G [8 − 1, 9 − 1] + B8< (�8 , �

′
9) ,

5 <0CA8G [8 − 1, 9],<0CA8G [8, 9 − 1])

6 end

7 end

8 B8< (!1, !2) =<0CA8G [<,=]/<

9 return B8< (!1, !2)

Similarity of Function Calls. PHunter also calculates the sim-

ilarity of two function call lists using Algorithm 1, which requires

the de�nition of the similarity between individual elements (i.e.,

function signatures). Similar to our previous design, if two signa-

tures match exactly (the signatures do not contain placeholder X),

the similarity is 1. If they are fuzzily matched (one of the signatures

contains placeholder X), the similarity is 0.5 and 0 otherwise.

Similarity of Critical Variables.We calculate the similarity

of two critical variable lists similarly as function calls.

Similarity of Methods. As aforementioned, we represent a

method as a set of �ne-grained path semantics. Given two methods

<C?;={?1, ?2, . . . , ?<} from TPL and <0??={?
′
1, ?
′
2, . . . , ?

′
=} from

app, where ?8 or ?
′
8 denotes a path semantic. PHunter formally

de�ne their similarity as follows:

B8< (<C?; ,<0??) =

<
∑

8=1

=
∑

9=1

<8 9 × B8<?0Cℎ (?8 , ?
′
9)/

�

�<C?;

�

� (3)

where<8 9=1 if ?8 matches ? ′9 and 0 otherwise. B8<?0Cℎ (?8 , ?
′
9) mea-

sures the similarity between two paths. Since the elements are un-

ordered, PHunter utilizes the Hungarian Algorithm [16] to search

for the optimum matrix< to maximize Equation 3.

3.3.3 Patch Presence Report. PHunter examines the presence of

a patch based on the methods’ semantic similarities. Speci�cally,

for a patch-related method<?A4 in the pre-patch TPL, we calculate

the method similarity between it and all the candidate methods in

the target app, and we select the one with the highest similarity

B8<(<?A4 ,<0??) in the app as the matched one.�en, the similarity

B8<(%'�,�%%) between the pre-patch TPL and the target app is

calculated as the average of the similarity between all patch-related

methods and the matched candidate. Similarly, PHunter also com-

putes the similarity B8<(%$(),�%%) between the post-patch TPL

and app. If B8<(%$(),�%%) or B8<(%'�,�%%) exceed a pre-de�ned

)ℎA4Bℎ>;35 8=4 , PHunter then determines the patch result accord-

ing to formula 4. We utilize such a threshold since it is less likely

the patch exists if the similarity is too low. We performed a study

to select appropriate thresholds (see Section 5.1). Speci�cally, we

consider the target app contains the patch if B8<(%$(),�%%)>

B8<(%'�,�%%), and vice versa. Otherwise, PHunter reports the

patch does not exist.

A4BD;C =

{

?0C2ℎ43, B8< (%$(),�%%) > B8< (%'�,�%%)

D=?0C2ℎ43, B8< (%$(),�%%) ⩽ B8< (%'�,�%%)
(4)

4 EXPERIMENT SETUP

4.1 Dataset Construction

In order to validate the e�ectiveness of PHunter, we need to prepare

a dataset of Android apps that utilize vulnerable TPLs containing

known CVEs with patches available. Since no publicly available

benchmark dataset can serve such a purpose, we created a dataset as

follows. First, we crawled 4,561 open-source apps from F-Droid [12],

a repository for open-source Android apps. By parsing the Gradle

build �les, we recognize all the libraries used by each app and then

collect the reported vulnerabilities and the corresponding a�ected

versions for each library by querying NVD [34]. However, identify-

ing the corresponding patch for a CVE is a challenging task [36].

Finally, we collected 94 CVEs that a�ect 31 distinct common li-

braries a�er spending huge manual e�orts (all these 94 CVEs are

displayed on our project website). Second, following the existing

work [44], we randomly selected 200 apps from F-Droid that utilized

these concerned libraries (we ensure that each app uses at least one

TPL that contains CVE) and compiled them without obfuscation.

�ird, to evaluate the capabilities of PHunter regarding di�erent

obfuscators, each of the 200 apps in the dataset is obfuscated using

four obfuscators (namely Proguard, DashO, Allatori and Obfuscapk)

with all obfuscation strategies enabled.

As a result, our dataset includes �ve sets of apps: a set of 200 non-

obfuscated apps, and four sets of apps (200 × 4) obfuscated by the

four obfuscators. Eventually, we construct 909 App-CVE pairs (one

appmay involvemultiple vulnerable TPLs), and 56.8% of which have

been patched while the others have not. To determine appropriate

thresholds, we randomly selected 30 unobfuscated apps (concerning

145 App-CVE pairs) and marked them as 30C0B4C?0A0< . All the

remaining apps and pairs will be used for further evaluation, which

are marked as30C0B4C1. Our approach also takes the pre-/post-patch

TPLs as input. �erefore, for all the 94 CVEs, we manually compiled

the pre-patch/post-patch reference from the source code before and

a�er applying the patch.

To investigate the e�ectiveness of PHunter with respect to its

capability in resisting di�erent obfuscation options, we randomly

selected 50 unobfuscated apps from 30C0B4C1 and used DashO to ob-

fuscate these apps with di�erent obfuscation options individually

(as shown in Table 1). �is is a time-consuming process. Finally,

we obtain one group (50 apps) of the original apps and four groups

(50 × 4) of the obfuscated apps (marked as 30C0B4C2). Compiling

Android apps with obfuscation is time-consuming, and it took us

about 150 hours to compile all of the apps and the TPLs.

4.2 Baseline Selection

We�rst comparePHunterwith existing state-of-the-art open-source

TPL detection tools, including LibScout [4], LibPecker [49], Li-

bID [48] and ATVHunter [44]. �ese tools can specify the TPL

versions used by the app in our dataset. Although they are not de-

signed to solve the patch presence test problem e�ectively, they can

353

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing Zou, and Hai Jin

be easily adapted since it is possible to �nd out whether the library

is a�ected by a vulnerability by querying the NVD database [34].

Among these tools, since ATVHunter is not publicly available due to

commercial issues, we re-implemented it based on the descriptions

in the paper (denoted as ATVHunter∗). We a�empted to reproduce

the results using the original dataset and compared them with the

results as reported in the paper [44]. Our re-implementation yielded

consistent results and it outperforms other library detection tools

as reported in the original paper, which a�rms its reliability. �e

existing patch presence test tools (e.g., BScout [7], PDi� [15] and

BinXray [43]) are designed for unobfuscated artifacts and none of

them are speci�cally designed for Android apps.We choose BinXray

as our baseline since it is advanced and open-sourced, and we care-

fully adapted it to work for Android apps (see our website [38]

for more details). Besides, BinXray assumes the target functions

are either vulnerable or patched in its original design. �erefore,

we have equipped BinXray with our coarse-grained semantics to

locate patch-related methods. On the contrary, BScout and PDi�

are not open-sourced and rely on code features that vary for dif-

ferent obfuscation strategies. For example, PDi� utilizes the name

of callees to construct its path constraints and invocations to com-

pare path similarities. BScout relies on the debug information to

generate a line-to-line mapping between the Java source code and

bytecode instructions. In summary, we select LibScout, LibPecker,

LibID, ATVHunter∗ and BinXray as our baselines.

4.3 Research �estions

We aim to answer the following research questions:

RQ1: How is the e�ectiveness of PHunter? In this RQ, we in-

vestigated the performance of PHunter on 30C0B4C1. We �rst evalu-

ate whether PHunter can identify the correct patch-related method.

We use the mapping �le (contains the mapping between obfus-

cated names and the original names) as the oracle to determine

whether a candidate is the correct patch related method and em-

ploy method-level accuracy as the metrics. We then evaluate (3)

the overall e�ectiveness of the patch presence test and employed

Accuracy ()%+)#
)%+)#+�%+�#) and FPR (�%

�%+)#) as metrics follow-

ing the existing work [7]. In particular, if PHunter reports that it

identi�es a CVE patch in an app that indeed contains the patch, we

consider it as a true positive (TP); If PHunter reports that it �nds

a CVE patch in an app in which the patch actually does not exist,

we consider it as a false positive (FP); For those cases in which the

vulnerability is not patched and PHunter reports there is no patch,

we consider it as a true negative (TN); Otherwise, it is considered

as a false negative (FN). For library version detection tools, we set

the threshold corresponding to the original paper. Since they may

report multiple versions of a library for an app at a time, following

previous studies [7, 48], we choose the library version(s) with the

highest similarity score as the matched version. If the matched

version shares the same patch status as the used TPL, we consider

the result is true positive or true negative. If the tool does not report

any version of the library, we consider there is one false negative.

RQ2: How can PHunter resist di�erent obfuscation op-

tions? We further investigate the e�ectiveness of PHunter with

respect to its capability in resisting di�erent obfuscation options.

�erefore, we run PHunter on 30C0B4C2 and then check the testing

results. We further compared PHunter with our selected baselines

with respect to the metric of Accuracy.

RQ3:Howdo themajor components ofPHunter contribute

to its performance?�ree major components that contribute to

PHunter’s promising performance are the devised type recovery

strategies, path summaries and method similarity computation. In

this RQ, we aim to investigate the contributions of these compo-

nents separately. In particular, to investigate type recovery, we

simply disable it in PHunter (i.e., denoted as PHunterr) and then

investigate its performance on 30C0B4C1. �e experimental se�ing is

the same as RQ1. As for path summaries, since we are the �rst to pro-

pose such obfuscation-resilient path summaries, there is no existing

work for direct comparisons. To evaluate it, we adapt the strategies

adopted by BinXray [43] (originally designed to compare path simi-

larities via utilizing the edit distance of two sequential instructions)

to replace our devised path summaries in PHunter (i.e., denoted as

PHuntera). In particular, we extract the instructions for each path

and utilize the formula “1/(1+�38C (?0Cℎ1, ?0Cℎ2))” (similar to Equa-

tion 2) to measure the similarity between two paths, where Edit

means the Levenshtein distance [18]. A�er utilizing such a strat-

egy to summarize paths, we then evaluate PHunter’s performance.

Our proposed �ne-grained features essentially equip PHunter with

the obfuscation-resilient method similarity computation. To eval-

uate its e�ectiveness, we replace our devised features with that

as adopted by ATVHunter to compute method similarities, and

then evaluate PHunter’s performance (i.e., denoted as PHunterm).

Speci�cally, given a method, ATVHunter assigns a unique sequence

ID (starting from 0) to each node of CFG. It prioritizes the child

node (subsequent node of a branch node) with more outgoing edges

and statements and assigns each node a sequence ID accordingly.

�en, ATVHunter concatenates all opcode sequences of each node

according to the sequence ID and calculates method similarity using

the fuzzy hash Algorithm [50].

RQ4: How is the e�ciency of PHunter? We measured the

test time of PHunter on 30C0B4C1. Speci�cally, we record the main

steps contributing to the tool’s overhead, including decompiling the

input binary (one apk and pre-/post-patch TPLs), locating method

candidates, and computing �ne-grained similarity.

5 EXPERIMENT RESULTS

We implemented PHunter as a tool with 11k lines of Java code based

on Soot [28]. We �rst performed a preliminary study to choose

appropriate thresholds for PHunter as shown in Section 5.1. We

then evaluate PHunter with respect to general e�ectiveness (RQ1),

the capability of code obfuscation-resilience (RQ2), the dissection

of performance (RQ3) and e�ciency (RQ4).

5.1 �reshold Tuning

To avoid bias, we utilize 30C0B4C?0A0< to determine appropriate

thresholds for PHunter and the parameters of selected baselines. We

leverage the same strategy to tune all the tools for fair comparisons.

Note that the apps in 30C0B4C?0A0< do not overlap with those used

in the evaluation.

Our approach needs to set two thresholds,)ℎA4Bℎ>;3coarse to

ensure the correct patch-related method is included in the candi-

date set, and)ℎA4Bℎ>;3�ne to ensure that PHunter can correctly

354

Precise and E�icient Patch Presence Test for Android Applications against Code Obfuscation ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ac
cu
ra
cy

Thresholdfine

coarse = 0.5
coarse = 0.6

coarse = 0.7

Figure 3: Similarity �reshold Selection

identify the patch-related methods. Following the existing stud-

ies [19, 42], we employ Grid Search [17] to determine the thresholds

empirically via optimizing the accuracy. Speci�cally, we �rst set

the two thresholds to 0 and gradually adjust them with the step of

0.1 until the upper bound of 1. We then select those values that can

achieve the highest accuracy. Figure 3 shows parts of the thresh-

olds tuning results. Speci�cally, when we set)ℎA4Bℎ>;3coarse to 0.5,

0.6 and 0.7, respectively, we can observe how the accuracy varies

with)ℎA4Bℎ>;3�ne. We can see that the three curves share a similar

pa�ern. �ey increase until the highest accuracy is achieved when

)ℎA4Bℎ>;3�ne=0.6 and then the curve decreases. Accordingly, we

choose)ℎA4Bℎ>;3coarse=0.6 and)ℎA4Bℎ>;3�ne=0.6 aiming to ahiceve

the highest accuracy.

For the library detection tools, LibScout needs to set one thresh-

old as the minimal similarly to match the reference TPLs with the

target apk. LibPecker needs to set three thresholds for method-,

package- and TPL-level matching. LibID needs to set two thresh-

olds for TPL-level matching and balancing between the detection of

TPLs and false positives. ATVHunter∗ also needs to set two thresh-

olds for method- and TPL-level matching. To tune thresholds for

these tools and adapt them to the problem of patch presence test,

we adopt the same procedure as discussed above to identify the

thresholds that achieve the highest accuracy at the patch-level. �e

�ne-tuned thresholds were then selected for further evaluation.

5.2 RQ1: General E�ectiveness

Identifying Patch-Related Methods.We �rst need to pinpoint

the correct patch-related method in the app. Our evaluation results

show that PHunter achieves the method-level accuracy of 96.3%,

94.0%, 95.2%, 93.5% and 95.9% for the unobfuscated apps, apps ob-

fuscated by Proguard, DashO, Allatori and Obfuscapk, respectively.

�rough further analysis, we found that the major reason for the

missed cases is function evolution. Particularly, a�er a CVE patch is

applied to the TPL, the method may be further modi�ed or even

deleted during subsequent so�ware evolution. �erefore, the con-

trol �ow and code features (e.g., function calls) of the patch-related

method may be drastically changed. In this case, even if the app is

not obfuscated, PHunter cannot locate the patch-related methods in

the app, resulting in false negatives. Nevertheless, we also observed

that the existing baselines cannot detect such cases neither.

Overall Results.Table 3 shows the comparison betweenPHunter

and other baselines in terms of patch presence test w.r.t. various

metrics. For the test on unobfuscated apps, PHunter accurately

identi�es the patch for 97.1% of the App-CVE pairs and reports few

false negatives (2.1%). For the test on apps obfuscated by Proguard,

DashO, Allatori and Obfuscapk, PHunter can achieve an accuracy

of 92.8%, 93.3%, 87.3%, 93.1% with a false positive rate of 7.0%, 1.7%,

5.5% and 6.2% respectively. To summarize, our tool achieves the op-

timum results among all the techniques. On average, the accuracy

of PHunter outperforms the best baselines by 2.2% (97.1%-95.9%)

for unobfuscated apps. As for the apps obfuscated by Proguard,

DashO, Allatori and Obfuscapk, the improvements w.r.t. accuracy

are 0.8% (92.8%-92.0%), 21.0% (93.3%-72.3%), 8.4% (87.3%-78.9%) and

5.8% (93.1%-87.3%), respectively. As we have explained that func-

tion evolution can cast signi�cant impacts on pinpointing correct

methods. Such issues can eventually a�ect the �nal patch presence

test results, which might lead to incorrect results.

Finding 1. PHunter is e�ective in testing the presence of patches

for vulnerabilities in obfuscated apps (i.e., the achieved accuracy is

up to 93.3%). It also outperforms SOTA baselines signi�cantly.

�e promising results achieved by PHunter as re�ected by the

above results is a�ributed to the fact that PHunter focus on ex-

tracting the features that are obfuscation-resilient, including both

coarse-grained and �ne-grained features. In contrast, existing state-

of-the-art library version detection tools utilize too coarse-grained

code features to identify patches or rely on the package structure

as supplementary information (see Section 2.2 for more details).

For instance, ATVHunter∗ achieves the best results among existing

library detection tools. However, for the apps that are obfuscated by

DashO, Allatori and Obfuscapk, its accuracy is signi�cantly compro-

mised due to control �ow obfuscation. �is is because ATVHunter∗

relies on the fuzzy hash algorithm [50] to compute method sim-

ilarities, which relies on the sequence of statements to generate

the �ngerprints. Nevertheless, the control �ow obfuscation will

change the code order, thus making it challenging for ATVHunter∗

to precisely capture the code semantics. For BinXray, it can achieve

an accuracy of 95.4% for unobfuscated apps. However, for apps

obfuscated by DashO, Allatori and Obfuscapk, the accuracy drops

signi�cantly to 60.0%, 49.7% and 52.8%, respectively. Such results

are mainly due to the control �ow obfuscation performed by the

obfuscators. Speci�cally, BinXray relies on the hash values of the

basic blocks to perform basic block matching and compare the sim-

ilarity between functions. �is design makes it less resilient to any

changes in the basic block. Unfortunately, the control �ow obfusca-

tion will insert redundant variables, constraints and invocations,

which results in signi�cantly di�erent hash values for basic blocks.

5.3 RQ2: Resilience to Each Obfuscation Option
We compare PHunter with other baselines on apps obfuscated by

di�erent obfuscation options. �e results are presented in Table 4.

It shows that PHunter achieves the optimum performance for all

the obfuscation options compared to the baselines. In particular,

PHunter achieves 100% accuracy for Identi�er Renaming and Pack-

age Fla�ening. For the resilience to Control Flow Obfuscation (CFO)

and Code Shrinking, PHunter decreases by about 2.1% and 3.3%,

respectively, demonstrating the capability of PHunter towards com-

mon obfuscation options. In comparison, the accuracy of other TPL

detection tools decreases to various degrees for di�erent obfusca-

tion options. Speci�cally, the accuracy of LibID is only 42.1% for

Identi�er Renaming. LibPecker can only correctly identify 69.4% of

the patches with Package Fla�ening. As for the CFO, the accuracy

of LibScout, LibID and ATVHunter∗ is reduced to 13.9%, 3.7% and

355

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing Zou, and Hai Jin

Table 3: Comparison on the E�ectiveness of Patch Presence Test

Tools
Non-obfuscated Proguard DashO Allatori Obfuscapk

TP TN Acc. FPR TP TN Acc. FPR TP TN Acc. FPR TP TN Acc. FPR TP TN Acc. FPR

LibScout 436 185 81.3% 8.3% 0 0 0.0% - 0 0 0.0% - 0 0 0.0% - 302 204 55.5% 9.8%

LibPecker 479 229 92.7% 4.1% 259 307 62.3% 8.0% 236 273 56.0% 14.1% 375 263 70.2% 18.1% 494 252 82.1% 21.9%

LibID 427 170 78.1% 5.9% 198 221 46.1% 12.9% 4 21 2.8% 8.6% 47 165 23.3% 6.8% 0 0 0.0% -

ATVHunter∗ 483 249 95.9% 2.5% 451 349 88.0% 9.9% 272 385 72.3% 14.2% 413 304 78.9% 10.6% 362 431 87.2% 6.3%

BinXray 477 252 95.4% 4.5% 480 356 92.0% 7.0% 129 416 60.0% 23.2% 106 346 49.7% 19.2% 151 329 52.8% 29.7%

PHunter 482 260 97.1% 2.1% 488 346 92.8% 7.0% 382 466 93.3% 1.7% 446 348 87.3% 5.5% 495 351 93.1% 6.2%

Table 4: Comparison on Common Obfuscation Options

Tools Renaming Repackage CFO Shrinking
LibScout 88.6% 23.2% 13.9% 15.3%
LibPecker 91.2% 69.4% 91.2% 64.4%
LibID 42.1% 45.5% 3.7% 19.0%
ATVHunter∗ 96.3% 87.6% 80.1% 94.2%
BinXray 95.2% 95.2% 56.2% 93.1%
PHunter 100.0% 100.0% 97.9% 96.7%

Renaming denotes Identi�er Renaming. Repackage denotes Package Fla�ening. CFO denotes
Control Flow Obfuscation. Shrinking denotes Code Shrinking.

Table 5: Contribution of the Major Components

Tools
Without With Obfuscation

Obfuscation Proguard DashO Allatori Obfuscapk

PHunterr 95.2% 88.6% 89.7% 83.5% 92.0%

PHuntera 96.1% 86.9% 72.8% 76.7% 85.8%

PHunterm 95.9% 85.1% 67.3% 76.2% 86.9%

PHunter 97.1% 92.8% 93.3% 87.3% 93.1%

PHunterr denotes PHunter disabling type recovery. PHuntera denotes PHunter with path
summaries from BinXray. PHunterm denotes PHunter utilizing the method similarity compu-
tation strategy designed by ATVHunter.

80.1%, indicating that these TPL detection tools are inadequately

resistant to these common obfuscation options. BinXray achieves

an accuracy of 95.2% for Identi�er Renaming since it does not rely

on identi�ers. For CFO, as aforementioned, the redundant func-

tion calls and variables will a�ect the hash values of basic blocks.

�erefore, the accuracy of BinXray drops to 56.2%.

Finding 2. PHunter can resist to various common obfuscation strate-

gies e�ectively with a high accuracy of 96.7%, including advanced

ones such as control-�ow randomization and code shrinking.

5.4 RQ3: Dissecting PHunter’s Performance

Table 5 shows the results. In particular, PHuntera achieves an accu-

racy of 96.1% and 86.9% for unobfuscated apps and apps obfuscated

by Proguard in which CFO is disabled. Such results are very promis-

ing since PHunter outperforms it by 2% to 3% respectively. However,

when the CFO is enabled, as shown in the results of DashO, Allatori

and Obfuscapk, the accuracy of PHuntera drops to 72.8%, 76.7% and

85.8%, respectively. In contrast, PHunter can signi�cantly outper-

form them by 20.5% (93.3%-72.8%), 10.6% (87.3%-76.7%) and 7.3%

(93.1%-85.8%). �is is because the instructions sequences as path

summaries (we adapted from BinXray) are changed drastically due

to the redundant code from CFO.

PHunterm achieves an accuracy of 95.9% and 85.1% for unobfus-

cated apps and apps obfuscated by Proguard. However, the accuracy

PHunterm is compromised when CFO is enabled. It achieves the ac-

curacy of 67.3%, 76.2% and 86.9% for apps obfuscated by DashO, Al-

latori and Obfuscapk, respectively. A�er analyzing some of missed

cases, we found that CFO a�ects the code order on which the fuzzy

hash relies (ATVHunter utilizes fuzzy hash to calculate method

Table 6: Average Time Consumption

Total Pre-process Coarse-grained Fine-grained
No-Obfuscation 236.9s 212.1s 1.9s 7.5s
Proguard 163.8s 155.7s 1.8s 6.1s
DashO 203.5s 162.3s 2.2s 37.2s
Allatori 260.8s 231.7s 2.0s 27.1s
Obfuscapk 243.2s 226.1s 1.9s 15.2s

Pre-process denotes decompiling the binary. Coarse-grained denotes locating candidate methods.
Fine-grained denotes �ne-grained similarity comparison.

similarity), thus compromising the accuracy. Such results demon-

strate that our devised �ne-grained path summaries can e�ectively

counteract the e�ects introduced by CFO. For PHunterr, it achieves

an accuracy of 95.2%, 88.6%, 89.7%, 83.5% and 92.0% on unobfus-

cated apps and apps obfuscated by Proguard, DashO, Allatori and

Obfuscapk, respectively. In practice, type recovery can help infer

about 10.5 obfuscated identi�ers in the patch-related method on

average and improve the accuracy by about 1% to 4%, proving its

e�ectiveness.

5.5 RQ4: E�ciency

Table 6 dissects the time consumption for PHunter on 30C0B4C1.

We can �nd that if the app has not been obfuscated, the average

time for PHunter to detect a patch for an app is about 4 minutes,

of which about 95% of the overhead comes from decompiling the

input app. Coarse-grained and �ne-grained analysis only takes

1.9s and 7.5s respectively, demonstrating that the tool’s e�ciency

mainly depends on the decompiler tools. For testing apps obfuscated

by Proguard, the time overhead is lower (163.8s per app) due to

two main reasons: (1) some unused code has been removed by the

obfuscator, which shrinks the binary size and (2) the patch-related

method in the app is potentially removed, and thus the �ne-grained

similarity comparison is not performed. For testing apps obfuscated

by DashO, Allatori and Obfuscapk, more time will be spent on �ne-

grained similarity computation (37.2s, 27.1s and 15.2s respectively)

due to the increase in paths. However, it will take a signi�cantly

longer time, which are 151.2s, 105.8s and 56.4s, if the path trimming

is not applied. In particular, we found that for the unobfuscated app,

the average number of paths dropped from 24.1 to 8.2 a�er path

trimming. For the app obfuscated by Control Flow Obfuscation, the

average number of paths dropped from 246.5 to 94.6, which proves

PHunter can e�ectively alleviate the path explosion problem.

Finding 3. PHunter is e�cient and can �nish the analysis within

minutes, in which the pre-process takes the majority of the time.

6 USEFULNESS OF PHUNTER

Existing TPL detection tools can identify the vulnerable libraries

in apps, and then usually generate a warning (i.e., an App-CVE

356

Precise and E�icient Patch Presence Test for Android Applications against Code Obfuscation ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 7: Detecting False Alarms of TPL Detection Tools

Total Warnings False Alarms (Ratio) Accuracy
dataset1(unobfuscated) 326 12 (3.7%) 100%
dataset1(obfuscated) 575 145 (25.2%) 95.3%
RealApps 3,957 613 (15.5%) -

pair) for each vulnerability contained in libraries to report that

the app might be threatened [11, 19, 21, 29, 44, 48, 49]. However,

existing approaches might report plenty of false alarms [44, 49].

A warning is a false alarm if either the vulnerable method does

not exist in the app or the vulnerable code has already been patched.

In such cases, the vulnerability actually would not threaten the

app. Fortunately, PHunter can detect such false alarms since it

can examine the vulnerable code to see whether it exists or has

been patched. �erefore, we perform the following experiments to

demonstrate such usefulness of PHunter.

Controlled Experiments. First, we perform a controlled exper-

iment on 30C0B4C1. In particular, we utilize all the apps in 30C0B4C1
in two scenarios: all the apps are not obfuscated and all the apps are

obfuscated using Proguard. Such two scenarios can re�ect the best

and worst cases compared to real-world apps since they usually

contain obfuscated apps mixed with non-obfuscated ones. We then

apply ATVHunter∗ (since it achieves the optimum performance as

revealed in RQ1) to detect TPLs on the above datasets to see how

many warnings it generates. Speci�cally, we utilize the collected

31 common TPLs of all versions and the 94 CVEs as the dataset for

reference checking, which are introduced in Section 4.1. Finally,

ATVHunter∗ generates 326 and 575 warnings for non-obfuscated

apps and apps obfuscated by Proguard, respectively. We then apply

PHunter to examine whether such warnings are false alarms. Since

we know the ground truth of this dataset (i.e., whether the vulnera-

ble methods exist or the vulnerable code has been patched), we can

evaluate the accuracy of PHunter in spo�ing such false alarms.

Large-scale Field Study. We further perform a large-scale �eld

study to evaluate the usefulness of PHunter in practice. In particular,

we collect the top 10,000 popular apps from Google Play (marked

as '40;�??B) ranked by the number of installations. Similarly, we

leverage ATVHunter∗ to detect TPLs as well as the vulnerabilities

enclosed in these apps. We also utilize the 31 common TPLs and

94 CVEs for reference checking. In total, ATVHunter∗ has detected

that these apps used 9,721 times of the concerned 31 TPLs. For each

detected TPL, if its version lies in the a�ected version range of

a corresponding CVE, ATVHunter∗ generates a warning. Finally,

ATVHunter∗ reports 3,957 warnings for all the 10,000 apps. We then

apply PHunter to detect whether such warnings are false alarms.

Experimental Results. For each reported warning (i.e., APP-

CVE pair), PHunter can analyze the vulnerability code to see if it

indeed exists in the app, and then detect false alarms as previously

de�ned. Table 7 shows the overall results on the warnings generated

by ATVHunter∗. For the non-obfuscated apps, since ATVHunter∗

can detect TPLs more precisely in this scenario, only 3.7% of them

are false alarms, and 100% of them can be detected and eliminated by

PHunter (i.e., Accuracy = 100%). For obfuscated apps, ATVHunter∗

is less e�ective and generates a high false alarms ratio of 25.2%.

Fortunately, PHunter can precisely detect such false alarms with

a high accuracy of 95.3%. For the real-world apps, since it is time-

consuming to construct the ground truth via manual checking for

all the 10,000 apps, we only report the false alarm ratio reported

by ATVHunter∗, which is 15.5%. Since PHunter is precise in identi-

fying such false alarms (i.e., as evaluated on 30C0B4C1), substantial

false alarms can be eliminated by PHunter, thus alleviating the

debugging e�orts for developers.

Finding 4. PHunter is useful, and can detect the false alarms gen-

erated by existing TPL detection tools with a high accuracy of 95.3%.

Actually, existing TPL detection tools can generate a high ratio of

false alarms, ranging from 3.7% to 25.2%.

7 DISCUSSION

�reats to Validity. �e validity of this study su�ers from two

main threats. 1). Bias of obfuscation strategies. In this study, we have

considered common-used obfuscation strategies, but there also

exists more complex strategies. Nevertheless, the obfuscators we

tested, Proguard, is popular and about 88% of apps use it for obfusca-

tion [37]. Another obfuscator, DashO, is also a powerful commercial

so�ware, which is used by over 5,000 companies. PHunter’s ability

to achieve high accuracy against these tools proves its obfuscated-

resistant ability. 2). �e implementation of BinXray and ATVHunter∗.

BinXray [43] was originally designed for C/C++. Fortunately, we

can re-use the main code of BinXray, which di�ers only in the pre-

processing phase (i.e., extract binary instructions) while the other

parts of code are directly re-uesd. �e adapted BinXray achieves

excellent results for unobfuscated apps (see Table 3), demonstrating

the validity. For ATVHunter∗, since its source code is not avail-

able and certain points are unclear [44], the implementation of

ATVHunter∗might be biased. However, our implementation yielded

consistent results and it outperforms other library detection tools

as reported in the original paper, which a�rms its reliability. �ere-

fore, such a threat is mitigated.

Limitation and Future Work. As aforementioned, a�er vul-

nerable patches are applied, some patch-related methods may be

further modi�ed or deleted in subsequent revisions, and PHunter is

ine�ective to handle such cases. In fact, we found that patch evolu-

tion is widespread. Limited by the di�culty of dataset collection,

this study does not evaluate the ability of the PHunter to resist

patch evolution in detail, while it is our important future work.

8 CONCLUSION

Ensuring app security is vital for vendors, while developers fre-

quently obfuscate code upon release. Consequently, patch presence

testing for obfuscated apps becomes essential. With this motivation,

we introduce PHunter, designed to extract obfuscation-resistant fea-

tures for identifying vulnerability patches. We evaluate PHunter on

a large dataset, demonstrating its e�ectiveness against advanced

code obfuscation strategies. To contribute to Android app security

assurance, we have released our tool and data.

ACKNOWLEDGMENTS

We sincerely thank all anonymous reviewers for their valuable com-

ments. �is work was supported by the National Natural Science

Foundation of China (Grant No. 62002125), the Young Elite Scien-

tists Sponsorship Program by CAST (Grant No. 2021QNRC001) as

well as the Hubei Province Key R&D Technology Special Innovation

Project under Grant No.2021BAA032.

357

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing Zou, and Hai Jin

REFERENCES
[1] Allatori. 2022. h�ps://allatori.com/. Accessed: 2022-10.
[2] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.

2020. Obfuscapk: An open-source black-box obfuscation tool for Android apps.
So�wareX 11 (2020), 100403. h�ps://doi.org/10.1016/j.so�x.2020.100403

[3] Alessandro Armando, Alessio Merlo, Mauro Migliardi, and Luca Verderame. 2012.
Would You Mind Forking �is Process? A Denial of Service A�ack on Android
(and Some Countermeasures). In Information Security and Privacy Research - 27th
IFIP TC 11 Information Security and Privacy Conference, SEC 2012, Heraklion, Crete,
Greece, June 4-6, 2012. Proceedings (IFIP Advances in Information and Communica-
tion Technology, Vol. 376), Dimitris Gritzalis, Steven Furnell, and Marianthi �eo-
haridou (Eds.). Springer, 13–24. h�ps://doi.org/10.1007/978-3-642-30436-1 2

[4] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable �ird-Party Library
Detection in Android and its Security Applications. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM, 356–367. h�ps://
doi.org/10.1145/2976749.2978333

[5] Salman Abdul Baset, Shih-Wei Li, Philippe Suter, and Omer Tripp. 2017. Iden-
tifying Android library dependencies in the presence of code obfuscation and
minimization. In Proceedings of the 39th International Conference on So�ware
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion
Volume, Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE
Computer Society, 250–252. h�ps://doi.org/10.1109/ICSE-C.2017.79

[6] CVE-2018-1324. 2022. h�ps://nvd.nist.gov/vuln/detail/CVE-2018-1324. Accessed:
2022-10.

[7] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu Xing,
Xiaohan Zhang, Xin Tan,Min Yang, and Zhemin Yang. 2020. BScout: DirectWhole
Patch Presence Test for Java Executables. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner
(Eds.). USENIX Association, 1147–1164. h�ps://www.usenix.org/conference/
usenixsecurity20/presentation/dai

[8] DashO. 2022. h�ps://www.preemptive.com/products/dasho/. Accessed: 2022-10.
[9] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao

Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. 2018. Understanding Android
Obfuscation Techniques: A Large-Scale Investigation in the Wild. In Security and
Privacy in Communication Networks - 14th International Conference, SecureComm
2018, Singapore, August 8-10, 2018, Proceedings, Part I (Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering,
Vol. 254), Raheem Beyah, Bing Chang, Yingjiu Li, and Sencun Zhu (Eds.). Springer,
172–192. h�ps://doi.org/10.1007/978-3-030-01701-9 10

[10] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain A�acks on Package
Managers for Interpreted Languages. In 28th Annual Network and Distributed
System Security Symposium, NDSS 2021, virtually, February 21-25, 2021. �e Inter-
net Society. h�ps://www.ndss-symposium.org/ndss-paper/towards-measuring-
supply-chain-a�acks-on-package-managers-for-interpreted-languages/

[11] Ruian Duan, Ashish Bijlani, Yang Ji, Omar Alrawi, Yiyuan Xiong, Moses
Ike, Brendan Saltaformaggio, and Wenke Lee. 2019. Automating Patch-
ing of Vulnerable Open-Source So�ware Versions in Application Binaries.
In 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. �e Internet Soci-
ety. h�ps://www.ndss-symposium.org/ndss-paper/automating-patching-of-
vulnerable-open-source-so�ware-versions-in-application-binaries/

[12] F-Droid: Free and Open Source So�ware. 2022. h�ps://f-droid.org. Accessed:
2022-10.

[13] Mahmoud Hammad, Joshua Garcia, and SamMalek. 2018. A large-scale empirical
study on the e�ects of code obfuscations on Android apps and anti-malware
products. In Proceedings of the 40th International Conference on So�ware Engi-
neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 421–431.
h�ps://doi.org/10.1145/3180155.3180228

[14] Soot Expr Interface. 2022. h�ps://www.sable.mcgill.ca/soot/doc/soot/jimple/
Expr.html. Accessed: 2022-10.

[15] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang,
Xinyu Xing, Min Yang, and Zhemin Yang. 2020. PDi�: Semantic-based Patch
Presence Testing for Downstream Kernels. In CCS ’20: 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, Virtual Event, USA, November
9-13, 2020, Jay Liga�i, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.).
ACM, 1149–1163. h�ps://doi.org/10.1145/3372297.3417240

[16] Harold W. Kuhn. 2010. �e Hungarian Method for the Assignment Problem. In 50
Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-
Art, Michael Jünger, �omas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A.
Wolsey (Eds.). Springer, 29–47. h�ps://doi.org/10.1007/978-3-540-68279-0 2

[17] Steven M. LaValle, Michael S. Branicky, and Stephen R. Lindemann. 2004. On the
Relationship between Classical Grid Search and Probabilistic Roadmaps. Int. J.

Robotics Res. 23, 7-8 (2004), 673–692. h�ps://doi.org/10.1177/0278364904045481
[18] Levenshtein distance. 2022. h�ps://en.wikipedia.org/wiki/Levenshtein distance.

Accessed: 2022-10.
[19] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,

and Wei Huo. 2017. LibD: scalable and precise third-party library detection in
android markets. In Proceedings of the 39th International Conference on So�ware
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián Uchitel,
Alessandro Orso, and Martin P. Robillard (Eds.). IEEE / ACM, 335–346. h�ps:
//doi.org/10.1109/ICSE.2017.38

[20] Apache Log4j2. 2022. h�ps://github.com/apache/logging-log4j2. Accessed:
2022-10.

[21] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast and
accurate detection of third-party libraries in Android apps. In Proceedings of the
38th International Conference on So�ware Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016 - Companion Volume, Laura K. Dillon,Willem Visser, and Laurie A.
Williams (Eds.). ACM, 653–656. h�ps://doi.org/10.1145/2889160.2889178

[22] Mateusz Pawlik and Nikolaus Augsten. 2016. Tree edit distance: Robust and
memory-e�cient. Inf. Syst. 56 (2016), 157–173. h�ps://doi.org/10.1016/
j.is.2015.08.004

[23] Yuxue Piao, Jin-hyuk Jung, and Jeong Hyun Yi. 2013. Structural and functional
analyses of proguard obfuscation tool. �e Journal of Korean Institute of Commu-
nications and Information Sciences 38, 8 (2013), 654–662.

[24] Proguard. 2022. h�ps://www.guardsquare.com/proguard. Accessed: 2022-10.
[25] Maven Central repository. 2022. h�ps://www.maven.org/. Accessed: 2022-10.
[26] AndroidMarket Share. 2022. h�ps://www.statista.com/statistics/266210/number-

of-available-applications-in-the-google-play-store/. Accessed: 2022-10.
[27] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.

2018. Pinpoint: fast and precise sparse value �ow analysis for million lines
of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June
18-22, 2018, Je�rey S. Foster and Dan Grossman (Eds.). ACM, 693–706. h�ps:
//doi.org/10.1145/3192366.3192418

[28] Soot. 2022. h�ps://github.com/soot-oss/soot. Accessed: 2022-10.
[29] Zhushou Tang, Minhui Xue, Guozhu Meng, Chengguo Ying, Yugeng Liu, Jianan

He, Haojin Zhu, and Yang Liu. 2019. Securing android applications via edge
assistant third-party library detection. Comput. Secur. 80 (2019), 257–272. h�ps:
//doi.org/10.1016/j.cose.2018.07.024

[30] understanding impact of apache log4j. 2022. h�ps://security.googleblog.com/
2021/12/understanding-impact-of-apache-log4j.html. Accessed: 2022-10.

[31] Raja Vallee-Rai and Laurie J Hendren. 1998. Jimple: Simplifying Java bytecode
for analyses and transformations. (1998).

[32] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,
and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active
Learning and Regeneration. InCCS ’21: 2021 ACM SIGSACConference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,
1755–1770. h�ps://doi.org/10.1145/3460120.3484736

[33] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,
and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active
Learning and Regeneration. InCCS ’21: 2021 ACM SIGSACConference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,
1755–1770. h�ps://doi.org/10.1145/3460120.3484736

[34] National vulnerability database. 2022. h�ps://nvd.nist.gov. Accessed: 2022-10.
[35] Haoyu Wang and Yao Guo. 2017. Understanding third-party libraries in mobile

app analysis. In Proceedings of the 39th International Conference on So�ware
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion
Volume, Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE
Computer Society, 515–516. h�ps://doi.org/10.1109/ICSE-C.2017.161

[36] Xinda Wang, Kun Sun, Archer L. Batcheller, and Sushil Jajodia. 2019. Detecting
”0-Day” Vulnerability: An Empirical Study of Secret Security Patch in OSS. In 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2019, Portland, OR, USA, June 24-27, 2019. IEEE, 485–492. h�ps://doi.org/
10.1109/DSN.2019.00056

[37] Yan Wang and Atanas Rountev. 2017. Who Changed You? Obfuscator Identi�ca-
tion for Android. In 4th IEEE/ACM International Conference on Mobile So�ware
Engineering and Systems, MOBILESo�@ICSE 2017, Buenos Aires, Argentina, May
22-23, 2017. IEEE, 154–164. h�ps://doi.org/10.1109/MOBILESo�.2017.18

[38] Online website of PHunter. 2022. h�ps://github.com/CGCL-codes/PHunter.
[39] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick

Traynor, and Sascha Fahl. 2018. A Large Scale Investigation of Obfuscation
Use in Google Play. In Proceedings of the 34th Annual Computer Security Applica-
tions Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018. ACM,
222–235. h�ps://doi.org/10.1145/3274694.3274726

[40] Apps with most third-party libraries. 2022. h�p://privacygrade.org/third party
libraries. Accessed: 2022-10.

358

https://allatori.com/
https://doi.org/10.1016/j.softx.2020.100403
https://doi.org/10.1007/978-3-642-30436-1_2
https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1109/ICSE-C.2017.79
https://nvd.nist.gov/vuln/detail/CVE-2018-1324
https://www.usenix.org/conference/usenixsecurity20/presentation/dai
https://www.usenix.org/conference/usenixsecurity20/presentation/dai
https://www.preemptive.com/products/dasho/
https://doi.org/10.1007/978-3-030-01701-9_10
https://www.ndss-symposium.org/ndss-paper/towards-measuring-supply-chain-attacks-on-package-managers-for-interpreted-languages/
https://www.ndss-symposium.org/ndss-paper/towards-measuring-supply-chain-attacks-on-package-managers-for-interpreted-languages/
https://www.ndss-symposium.org/ndss-paper/automating-patching-of-vulnerable-open-source-software-versions-in-application-binaries/
https://www.ndss-symposium.org/ndss-paper/automating-patching-of-vulnerable-open-source-software-versions-in-application-binaries/
https://f-droid.org
https://doi.org/10.1145/3180155.3180228
https://www.sable.mcgill.ca/soot/doc/soot/jimple/Expr.html
https://www.sable.mcgill.ca/soot/doc/soot/jimple/Expr.html
https://doi.org/10.1145/3372297.3417240
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1177/0278364904045481
https://en.wikipedia.org/wiki/Levenshtein_distance
https://doi.org/10.1109/ICSE.2017.38
https://doi.org/10.1109/ICSE.2017.38
https://github.com/apache/logging-log4j2
https://doi.org/10.1145/2889160.2889178
https://doi.org/10.1016/j.is.2015.08.004
https://doi.org/10.1016/j.is.2015.08.004
https://www.guardsquare.com/proguard
https://www.maven.org/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://github.com/soot-oss/soot
https://doi.org/10.1016/j.cose.2018.07.024
https://doi.org/10.1016/j.cose.2018.07.024
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://doi.org/10.1145/3460120.3484736
https://doi.org/10.1145/3460120.3484736
https://nvd.nist.gov
https://doi.org/10.1109/ICSE-C.2017.161
https://doi.org/10.1109/DSN.2019.00056
https://doi.org/10.1109/DSN.2019.00056
https://doi.org/10.1109/MOBILESoft.2017.18
https://github.com/CGCL-codes/PHunter
https://doi.org/10.1145/3274694.3274726
http://privacygrade.org/third_party_libraries
http://privacygrade.org/third_party_libraries

Precise and E�icient Patch Presence Test for Android Applications against Code Obfuscation ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

[41] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely
Characterizing Security Impact in a Flood of Patches via Symbolic Rule Com-
parison. In 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020. �e Internet Soci-
ety. h�ps://www.ndss-symposium.org/ndss-paper/precisely-characterizing-
security-impact-in-a-�ood-of-patches-via-symbolic-rule-comparison/

[42] Liang Xiao, Ruili Wang, Bin Dai, Yuqiang Fang, Daxue Liu, and Tao Wu. 2018.
Hybrid conditional random �eld based camera-LIDAR fusion for road detection.
Inf. Sci. 432 (2018), 543–558. h�ps://doi.org/10.1016/j.ins.2017.04.048

[43] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020.
Patch based vulnerability matching for binary programs. In ISSTA ’20: 29th ACM
SIGSOFT International Symposium on So�ware Testing and Analysis, Virtual Event,
USA, July 18-22, 2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM,
376–387. h�ps://doi.org/10.1145/3395363.3397361

[44] Xian Zhan, Lingling Fan, Sen Chen, FengWu, Tianming Liu, Xiapu Luo, and Yang
Liu. 2021. ATVHUNTER: Reliable Version Detection of �ird-Party Libraries for
Vulnerability Identi�cation in Android Applications. In 43rd IEEE/ACM Interna-
tional Conference on So�ware Engineering, ICSE 2021, Madrid, Spain, 22-30 May
2021. IEEE, 1695–1707. h�ps://doi.org/10.1109/ICSE43902.2021.00150

[45] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei
Xu, Xiapu Luo, and Yang Liu. 2020. Automated �ird-Party Library Detection
for Android Applications: Are We �ere Yet?. In 35th IEEE/ACM International
Conference on Automated So�ware Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 919–930. h�ps://doi.org/10.1145/3324884.3416582

[46] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang
Liu. 2022. Research on �ird-Party Libraries in Android Apps: A Taxonomy and

Systematic Literature Review. IEEE Trans. So�ware Eng. 48, 10 (2022), 4181–4213.
h�ps://doi.org/10.1109/TSE.2021.3114381

[47] Hang Zhang and Zhiyun Qian. 2018. Precise and Accurate Patch Presence
Test for Binaries. In 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, William Enck and Adrienne Porter
Felt (Eds.). USENIX Association, 887–902. h�ps://www.usenix.org/conference/
usenixsecurity18/presentation/zhang-hang

[48] Jiexin Zhang, Alastair R. Beresford, and StephanA. Kollmann. 2019. LibID: reliable
identi�cation of obfuscated third-party Android libraries. In Proceedings of the
28th ACM SIGSOFT International Symposium on So�ware Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Møller
(Eds.). ACM, 55–65. h�ps://doi.org/10.1145/3293882.3330563

[49] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min Yang,
and Hao Chen. 2018. Detecting third-party libraries in Android applications
with high precision and recall. In 25th International Conference on So�ware Anal-
ysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March 20-23,
2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (Eds.). IEEE
Computer Society, 141–152. h�ps://doi.org/10.1109/SANER.2018.8330204

[50] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged
smartphone applications in third-party android marketplaces. In Second ACM
Conference on Data and Application Security and Privacy, CODASPY 2012, San
Antonio, TX, USA, February 7-9, 2012, Elisa Bertino and Ravi S. Sandhu (Eds.).
ACM, 317–326. h�ps://doi.org/10.1145/2133601.2133640

Received 2023-02-16; accepted 2023-05-03

359

https://www.ndss-symposium.org/ndss-paper/precisely-characterizing-security-impact-in-a-flood-of-patches-via-symbolic-rule-comparison/
https://www.ndss-symposium.org/ndss-paper/precisely-characterizing-security-impact-in-a-flood-of-patches-via-symbolic-rule-comparison/
https://doi.org/10.1016/j.ins.2017.04.048
https://doi.org/10.1145/3395363.3397361
https://doi.org/10.1109/ICSE43902.2021.00150
https://doi.org/10.1145/3324884.3416582
https://doi.org/10.1109/TSE.2021.3114381
https://www.usenix.org/conference/usenixsecurity18/presentation/zhang-hang
https://www.usenix.org/conference/usenixsecurity18/presentation/zhang-hang
https://doi.org/10.1145/3293882.3330563
https://doi.org/10.1109/SANER.2018.8330204
https://doi.org/10.1145/2133601.2133640

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 App Obfuscation
	2.2 Existing Approaches
	2.3 Challenges and Insights

	3 Approach
	3.1 Locating Candidate Methods
	3.2 Path Extraction & Trimming
	3.3 Path Summary & Comparison

	4 Experiment Setup
	4.1 Dataset Construction
	4.2 Baseline Selection
	4.3 Research Questions

	5 Experiment Results
	5.1 Threshold Tuning
	5.2 RQ1: General Effectiveness
	5.3 RQ2: Resilience to Each Obfuscation Option
	5.4 RQ3: Dissecting PHunter's Performance
	5.5 RQ4: Efficiency

	6 Usefulness of PHunter
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

