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Abstract
This paper introduces the concept of optimization interac-
tion, which refers to the practice in modern compilers where
multiple optimization phases, such as inlining, loop unrolling,
and dead code elimination, are not completed in a one-off
sequential order while being interacted instead. Therefore,
while optimizing a certain phase, the compiler needs to en-
sure that the results of other optimization phases will not be
disrupted, as this could lead to compiler crashes or unpre-
dictable results. To verify whether compilers can correctly
handle the optimization process across various phases, we
propose MopFuzzer, which aims at maximizing runtime op-
timization interactions during fuzzing. Specifically, it en-
courages the JVM to perform multi-stage optimizations and
verifies the correctness of the compiler’s optimized code
through differential testing. Currently, MopFuzzer has im-
plemented 13 mutators, and each is intended to trigger a
certain optimization behavior. Such mutators are applied
iteratively to the same program point, aiming to maximize
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optimization interactions. Subsequently, the testing process
is guided by a novel method based on profile data, which
records the optimization behaviors performed by the com-
piler. The guidance enables MopFuzzer to generate mutants
that are able to maximize optimization behaviors and their
interactions. Our evaluation has led to 59 bug reports for
widely used production JVMs, OpenJDK and OpenJ9.
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1 Introduction
Compiler optimization plays a pivotal role in modern pro-
gramming language virtual machines, significantly enhanc-
ing application performance. For example, the Java Virtual
Machine (JVM) employs advanced optimization techniques
to translate frequently executed bytecode into machine code,
thereby boosting performance. This process is facilitated by
the Just-In-Time (JIT) compiler, an integral and indispens-
able component within various JVM implementations (e.g.,
HotSpot in OpenJDK) as well as in virtual machines for other
programming languages (e.g., JavaScript V8 Turbofan [47]).

The JVM’s JIT compiler has implemented a wide array of
intricate optimization techniques, including lock elimination,
loop unrolling, and function inlining. Recognized as one of
the most significant yet complex components in JVM, the
JIT compiler has witnessed an increase in the occurrence
of bugs, becoming more pervasive over recent years [23].
Unfortunately, ensuring the accuracy of JIT compilers is chal-
lenging. Despite the commendable performance achieved by
many existing testing tools [6, 7, 23, 28, 53], a recent study
revealed that the majority of disclosed bugs are shallow [28],
which are often triggered at the initial parsing and verifica-
tion stages. Besides, we observe that various optimization
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1 // src/hotspot/share/c1/c1˙GraphBuilder.cpp

2 bool GraphBuilder :: try˙inline˙full (...)–

3 // ...

4 if (callee -¿is˙synchronized () &&

sync˙handler -¿state() != NULL) –

5 // If an exception is thrown and not

6 // handled within an inlined

7 // synchronized method , the monitor must

8 // be released before the exception is

9 // rethrown in the outer scope.

10 fill˙sync˙handler(lock , sync˙handler);

11 ˝ ˝

Listing 1. An example of OpenJDK that carefully handles
the optimization interaction during function inlining

behaviors frequently interact with each other, further com-
plicating the validation of compiling correctness.
Optimization Interaction. The JVM JIT compiler typi-

cally optimizes code through a series of phases. For instance,
in the C2 phase, the compiler performs optimizations such as
iterative global value numbering, inlining, and autobox elimi-
nation [13, 18, 33]. Although each phase has its designated
task, the complex code implemented by developers in prac-
tice can often lead to intricacies where multiple optimizations
are intertwined. In this work, we call such interaction across
multiple optimization phases as optimization interaction. List-
ing 1 shows an example where OpenJDK carefully handles
optimization interaction during the function inlining phase.
In this example, when attempting to inline a callee during
function inlining, the compiler enforces specific exception
handling to tackle synchronized methods. This includes in-
structions to release the monitor lock and re-throw the ex-
ception. Such handling is crucial to ensure the correctness
and consistency of a program’s synchronization behavior.
In this way, the JVM can maintain the thread safety of syn-
chronized methods, even in the context of optimized inline
calls. Without such correct handling, it could lead to issues
like monitor lock leakage and improper exception handling in
subsequent lock-related phases.
Key Idea. Despite developers’ substantial efforts to safe-

guard optimizations in one phase from negatively impacting
the correctness of other phases, existing compilers still re-
main susceptible to various bugs caused by intricate scenar-
ios in practice. Unfortunately, effective testing is challenging
as the triggering of such optimization interactions often
requires sophisticated test cases. This study introduces an
innovative method aimed at identifying deep JIT compiler
bugs stemming from optimization interactions instead of
those shallow ones that can be triggered easily at the early
compilation stages. To effectively and efficiently achieve this
goal, we need to address several non-trivial challenges. First,
the generated test seeds should proactively induce optimiza-
tion behaviors, particularly the interactions among diverse

optimization strategies. Second, the search space will be huge
considering the interacting impact of substantial optimiza-
tions, and thus effective guidance is desired to navigate the
exploration of optimization interactions.

Our key idea to tackle the aforementioned challenges pri-
marily encompasses the following aspects. First, we devise
a series of novel optimization evoking mutators intended to
proactively trigger different types of optimization behav-
iors to generate test seeds. Specifically, we employ these
mutators on a fixed mutation point iteratively, and the in-
serted new code is adjacent to or nested around existing code.
This strategy aims to maximize the occurrence of diverse
optimization interactions. We then probe the profile data
generated by virtual machines during runtime and leverage
the contained optimization information as valuable feed-
back, which is used to navigate the generation of new seeds.
Ultimately, any crashes or inconsistencies observed across
multiple JVM implementations serve as test oracles.
Implementation. We develop MopFuzzer based on our

idea to test JVM JIT compilers and validate their correct-
ness. Specifically, we design and integrate a broad range of
optimization evoking mutators that can proactively trigger
different types of optimizations. By leveraging the profile
data extracted from the log information generated by JVM
as guidance, MopFuzzer is able to examine whether a gener-
ated mutant can indeed trigger more optimization behaviors.
Eventually, MopFuzzer has uncovered 59 bugs, of which 45
are in OpenJDK and 14 in OpenJ9. We find that all the test
cases triggering these bugs involve various JVM optimization
behaviors. Such results validate our observation, indicating
that the mishandling of optimization interactions among
diverse optimization techniques ultimately led to the bugs.
Our results also show that MopFuzzer can outperform the
state-of-the-art approaches in terms of code coverage and
the increment of triggered optimization behaviors. Section 4
presents our evaluation and detailed analysis.

Contributions. Our main contributions are as follows:
•We are the first to focus on exploring the optimization

interactions of JIT compilers.
•We propose novel ideas with optimization evoking mu-

tators and profile data-based guidance to rigorously test JVM
JIT compilers via maximizing optimization interactions.
•We substantiate our idea as an automated testing tool

MopFuzzer, which has detected 59 bugs in widely used JVM
implementations, OpenJDK and OpenJ9.

Our tool MopFuzzer and all the reported bugs are publicly
available to facilitate future researches.

https://github.com/CGCL-codes/MopFuzzer.

2 Background and Motivation
2.1 JVM and JIT Compiler
Initially, the JVM executes code (.class file) in the inter-
pretive mode. During this process, it profiles runtime data,

https://github.com/CGCL-codes/MopFuzzer
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identifying frequently executed functions or basic blocks,
which are then labeled as “HotSpot” code. To enhance the
efficiency of executing such HotSpot code, the JVM employs
sophisticated optimization strategies, which translate them
into machine code with high-performance. The compiler fa-
cilitating this transformation is known as the Just-In-Time
(JIT) compiler [3, 41]. The JIT compiler is an integral and cru-
cial component of many JVM implementations (e.g., HotSpot
in OpenJDK). The JVM JIT mainly contains two compiler
types: C1 and C2 Compiler. The C1 Compiler [25], or “Client
Compiler”, prioritizes swift start-up times, making it histor-
ically ideal for short-lived applications. C2 Compiler [33],
known as the “Server Compiler”, is designed for optimal
long-term performance, traditionally suiting long-running
server-side applications.

2.2 JVM Flags and Profile Data
The JVM also provides abundant flags [14, 15] to print out
the profile data to monitor JVM’s runtime behaviors for de-
bugging and analysis. In this study, we refer to profile data
as the log information that records the details of certain op-
timization behaviors performed by the JVM. For instance,
the PrintAssembly flag can be used to output the assembly
code generated by the JIT compiler. The PrintEscapeAnalysis
flag outputs the details of how the JIT compiler is optimizing
object allocations based on the escape analysis. This is espe-
cially useful for those who want to understand the low-level
optimizations performed by the JVM on the Java bytecode.

2.3 Optimization Interaction
Code optimization is a crucial part of the whole compila-
tion process for modern compilers [10, 11, 19, 34, 39]. Take
LLVM [27] as an example. It breaks down the optimization
process into a series of “passes”, with each pass responsible
for a specific task. Similarly, the JVM JIT compiler also opti-
mizes code through a series of phases. In the C2 phase, the
compiler performs optimizations like iterative global value
numbering, inlining, autobox elimination, etc. Although each
phase has its designated task, the code implemented by de-
velopers with unlimited complexity in practice often leads to
intricacies where multiple optimizations become intertwined.
Therefore, developers need to make tremendous efforts to
ensure that optimizations in one phase do not adversely af-
fect the correctness of other phases. In this work, we call
such interaction of optimizations across multiple phases as
optimization interaction.

Listing 1 shows an example where OpenJDK carefully han-
dles optimization interaction during the function inlining
phase. In this example, when attempting to inline a callee
during the function inlining phase, the compiler generates
specific exception handling code for synchronized methods.
This includes instructions to release the monitor lock and
rethrow the exception. Such handling is crucial to ensure the
correctness and consistency of a program’s synchronized

behavior. In this way, the JVM maintains the thread safety
of synchronized methods, even in the context of optimized
inline calls. On the other hand, if the compiler does not care-
fully handle synchronized methods during the inlining phase,
it could lead to issues like monitor lock leakage and improper
exception handling in subsequent lock-related phases.

We observe that the phenomenon of optimization interac-
tion is pervasive in modern compilers while guaranteeing its
correctness is challenging since such interaction can only be
triggered with sophisticated test cases. In particular, multiple
optimization behaviors should be triggered simultaneously
(e.g., a callee is involved in both synchronization and inline
optimizations for the example in Listing 1). Generating such
test cases is non-trivial, and the following shows a real exam-
ple demonstrating how our designed approach, MopFuzzer,
can achieve such a goal effectively.

2.4 Motivating Example
Listing 2 shows a seed collected from existing regression
tests. We show how MopFuzzer can generate a new seed
based on it that can trigger a crash in OpenJDK via explor-
ing optimization interactions. First, MopFuzzer randomly
selects one statement to serve as the Mutation Point (MP).
It then iteratively applies various mutators to MP, each de-
signed to evoke a specific type of JIT optimization behav-
ior. Listing 3 illustrates the mutant generated after four it-
erations, where MopFuzzer applied four mutators to MP:
LockElimination-evoke twice for the JIT lock elimination op-
timization, LoopUnroll-evoke once for loop unrolling, and
LockCoarsening-evoke once for lock coarsening optimiza-
tion. Eventually, the generated mutant led the compiler to
crash, and we reported this bug to the OpenJDK develop-
ers. It was confirmed as JDK-8312744. The whole process
aims to generate a mutant that can trigger complex JIT opti-
mization interactions, and thus MopFuzzer mutates the seed
regarding the same MP, which results in the code inserted
by MopFuzzer being nested or adjacent. For example, the
two synchronized statements at Line 8 and Line 6 are nested,
while the synchronized statement at Line 13 resides next to
the for-loop structure at Line 10. As a result, when the com-
piler optimizes the mutant, different optimization behaviors
(e.g., lock elimination, loop unrolling, and lock coarsening in
this case) are likely to interact with each other.
1 class T –

2 public static void main(String [] arg)–

3 T t = new T();

4 for (int i = 0; i ¡ 50˙000; ++i) –

5 t.foo(i); // Mutation Point

6 ˝

7 ˝

8 void foo(int i) – ... ˝

9 ˝

Listing 2. The original seed with line 5 selected as the
mutation point

https://bugs.openjdk.org/browse/JDK-8312744


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zifan Xie, Ming Wen, Shiyu Qiu, and Hai Jin

1 class T –

2 public static void main(String [] arg)–

3 T t = new T();

4 for (int i = 0; i ¡ 50˙000; ++i) –

5 // iter1: LockElimination -evoke

6 synchronized (T.class) {
7 // iter2: LockElimination -evoke

8 synchronized (T.class) {
9 // iter3: LoopUnroll -evoke

10 for (int v0 = 0; v0 ¡ 8; ++v0)

11 t.foo(i);

12 // iter4: LockCoarsening -evoke

13 }

14 synchronized (T.class) {
15 t.foo(i); // Mutation Point

16 }

17 }
18 ˝

19 ˝

20 void foo(int i) – ... ˝

21 ˝

Listing 3. A test case that causes a crash (i.e., JDK-
8312744 [21]) in the mainline OpenJDK. After four iterations,
MopFuzzer applied four mutators at the mutation point. The
code inserted in each iteration is highlighted for clarity.
Additionally, the test case has been condensed for brevity.

We observe that the incorrect handling of such interac-
tion among diverse optimizations that eventually caused the
crash. In particular, applying a single mutator among the
four to the original seed or removing any injected code by
any mutator from the mutant cannot cause the compiler
to crash anymore. In this case, the root cause of the error
is the interaction between loop unrolling optimization and
lock coarsening optimization. The loop unrolling optimization
in the ideal loop phase unfolds the loop structure at Lines
10-11, altering the program structures. This alteration, in
turn, results in a failure in the lock coarsening optimization
during the macro expand phase. Then, the compiler attempts
to retry without lock coarsening, but it mistakenly sets a
pointer to null and uses it in subsequent optimizations, thus
resulting in a null pointer reference error.

Although developers have recognized the importance of
handling the interplay among various optimization behav-
iors to prevent compilers from inadvertently disrupting the
logic of another optimization behavior (see Listing 1), they
can still easily overlook certain situations that involve com-
plex optimization interactions, and thus bugs might occur.
However, guaranteeing the correctness of the JIT compiler
is of significant importance. Therefore, it motivates us to
propose a method that can proactively identify such bugs

via rigorously testing compilers with the aim of maximizing
optimization interactions.

2.5 Existing Practices
A number of JVM fuzzing tools have been proposed over
recent years [6, 7, 23, 52, 53]. In particular, JITFuzz [50]
and Artemis [28] are two state-of-the-art JVM testing tools
that are proposed recently. JITFuzz employs four mutators
tailored to trigger specific JVM optimization behaviors: func-
tion inlining, simplification, scalar replacement, and escape
analysis. Additionally, it has designed two mutators that
reshape the control flow of seeds. JITFuzz then adopts a
coverage-driven strategy, randomly picking mutation points
with such mutators in each iteration to exploit JVM bugs.
Artemis introduced the concept of Compilation Space Explo-
ration for the first time [28]. Specifically, it employs three
mutation templates that target method calls, loops, and un-
common traps respectively, thus manipulating the dynamic
behaviors between interpretation and JIT compilation. While
these tools have proven to be effective, they still fall short in
detecting bugs related to optimization interactions for the
following reasons. First, triggering such JIT bugs requires
the JVM to activate diverse optimization behaviors in one
execution, such as reflective mechanisms, nested locks, and
complex loop structures. For instance, JDK-8312744 requires
a test case to involve nested locks and loop structures. The
mutators designed by JITFuzz and Artemis overlook the inter-
action among various optimization behaviors. Since the mu-
tants generated by them lack complex structures (e.g., nested
and adjacent locks as shown in Listing 3), they fail to explore
the interactions among different JVM optimization behaviors,
and thus cannot validate their correctness.

3 Approach
In this work, we introduceMopFuzzer to test JVM JIT compil-
ers, which validate compiler behaviors via maximizing the in-
teractions among diverse optimization behaviors. To achieve
such a goal, we first design a variety of mutators, each of
which intends to proactively evoke certain optimization be-
haviors in the target compiler. For example, the mutator
LoopUnroll-evoke inserts a carefully designed loop structure
into the seed, aiming to trigger loop unrolling optimizations
in the compiler. MopFuzzer then applies multiple mutators
to the same code element of a seed iteratively guided by the
profile data, aiming to maximize optimization interactions.
Specifically, the code inserted by the mutators is designed to
be adjacent to or nested around the selected mutation points
to explore optimization interactions. Correctly handling such
seeds requires the compiler to ensure that implementing one
optimization does not compromise the results of another,
and thus can validate the compiler’s stability.

https://bugs.openjdk.org/browse/JDK-8312744
https://bugs.openjdk.org/browse/JDK-8312744
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3.1 Overview
Algorithm 1 shows the general workflow of our approach.
Specifically, it takes three inputs: a seed corpus C, a tar-
get JVM implementation J , and the designed mutatorsM.
MopFuzzer mainly contains the following steps.

1. Select a seed file 𝑝 as parent from C sequentially (Line
1); Randomly select a statement 𝑀𝑃 as the mutation
point in 𝑝 (Line 2); Execute 𝑝 to obtain the correspond-
ing profile data 𝑂𝑝 (Line 3), the profile data records
the various optimization behaviors performed by J ;
Initiate the weight of each mutator to 1 (Line 4).

2. Analyze the code structures of 𝑀𝑃 , identify its opti-
mization space, select a set of mutatorsM𝑝 that are ap-
plicable to 𝑀𝑃 , and obtain the corresponding weights
(i.e.,W𝑝 ) for these mutators (Lines 6-7).

3. Choose a mutator 𝑚 fromM𝑝 by weighted random
selection (Lines 8-9).

4. Apply mutator 𝑚 on 𝑀𝑃 to obtain a child mutant 𝑐
and further execute the mutant 𝑐 to obtain its corre-
sponding profile data 𝑂𝑐 (Lines 10-13).

5. Compare 𝑂𝑐 with 𝑂 to identify the increment of opti-
mization behaviors and update the mutator𝑚’s weight
𝑊𝑚 accordingly (lines 13-14).

6. Set mutant 𝑐 as the parent and repeat steps 2-5 until a
predetermined threshold of iteration times is reached,
or a mutant causes the JVM J to crash (Line 18).

7. Perform differential testing on the final mutant 𝑐★ us-
ing different JVM implementations. If MopFuzzer iden-
tifies different outputs, a potential bug might lurk
within them. We will reduce and report the mutant if
𝑐★ indeed triggers bugs. (Lines 19-22).

3.2 Optimization Evoking Mutators
As aforementioned, to maximize optimization interactions,
we first need to design a set of mutators that can proactively
trigger specific optimization behaviors of JVM JIT compilers.
Different JVM implementations, such as HotSpot, OpenJ9,
and GraalVM, might use varying optimization techniques
and strategies. Therefore, designing such optimization evok-
ing mutators is non-trivial.

In this work, we refer to the optimization strategies em-
ployed by HotSpot. HotSpot, utilized in OpenJDK and Oracle
JDK, is known for its robust performance and remains to be
one of the most popular and widely used JVM implemen-
tations nowadays. On the official OpenJDK Wiki [49], the
HotSpot team has listed a comprehensive set of optimization
techniques used in its JIT compiler. Certain optimization
strategies involve deep-level optimizations, making them dif-
ficult to be activated via mutations. For example, the “Local
Code Scheduling” aims to improve the execution efficiency of
program on specific hardware by rearranging the sequence

Algorithm 1:MopFuzzer’s Fuzzing Loop
Input :A seed corpus C; a target JVM implementation J. The

designed mutatorsM.
1 𝑝 ← 𝑔𝑒𝑡𝑆𝑒𝑒𝑑 (C) // Obtain a seed file as parent from C
2 𝑀𝑃 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑀𝑃 (𝑝 ) // Select a mutation point on 𝑐

3 𝑂𝑝 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (J, 𝑝 ) // Execute 𝑝 to get profile data 𝑂𝑝

4 W ← {1, 1, ..., 1} // Initial mutators’ weight

5 repeat
6 /* find applicable mutators and their weights */

7 M𝑝 ,W𝑝 ← 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒𝑀𝑢𝑡𝑎𝑡𝑜𝑟𝑠 (𝑀𝑃 )
8 /* select mutator 𝑚 based on its weight */

9 𝑚 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑀𝑢𝑡𝑎𝑡𝑜𝑟𝐵𝑦𝑊𝑒𝑖𝑔ℎ𝑡 (M𝑝 ,W𝑝 )
10 /* Apply mutator 𝑚 on 𝑀𝑃 to get a child mutant */

11 𝑐 ← 𝑎𝑝𝑝𝑙𝑦𝑀𝑢𝑡𝑎𝑡𝑜𝑟 (𝑀𝑃,𝑚)
12 /* Execute the mutant 𝑐 to get profile data 𝑂𝑐 */

13 𝑂𝑐 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑐, J)
14 /* Update the mutator 𝑚’s weight 𝑊𝑚 based on

optimization behaviors increment by compare

profile data between 𝑂𝑝 and 𝑂𝑐 */

15 𝑊𝑚 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡 (𝑂𝑝 ,𝑂𝑐 )
16 /* Set the parent as the child mutant 𝑐 */

17 ⟨𝑝,𝑂 ⟩ ← ⟨𝑐,𝑂𝑐 ⟩
18 until MAX Iterations or Crash found;
19 /* Conduct differential testing on final mutant 𝑐★ */

20 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 (𝑐★)
21 /* Reduce and report mutant if it trigger bugs */

22 𝑟𝑒𝑑𝑢𝑐𝑒𝐴𝑛𝑑𝑅𝑒𝑝𝑜𝑟𝑡 (𝑐★)

of scheduled instructions and hence designing mutators at
the source code level is non-trivial. Eventually, we designed
13 Optimization Evoking Mutators, which aim to trigger pri-
marily the following optimization behaviors respectively:
loop unrolling, lock elimination, lock coarsening, inlining,
dereflection, loop peeling, loop unswitching, deoptimization,
autobox elimination, redundant store elimination, algebraic
simplification, escape analysis, dead code elimination. Due
to page limit, we list five of the designed mutators in Ta-
ble 1, and other mutators’ details can be found on our project
page [35]. We select these 13 optimizations since they are
the most common ones that are pervasively triggered. Note
that due to the interactive nature of various optimization
behaviors, one mutator can actually trigger multiple types
of optimization behaviors in practice (see more discussion
in Section 3.4). Besides, there are multiple ways to design
the evoking mutator for each optimization behavior, and we
only explored one implementation in this study. Our idea is
extensible, and thus the support for more optimizations as
well as the other implementations of such evoking mutators
are left as our important future work.

LoopUnrolling-evoke: Loop unrolling is a common op-
timization technique used in programming to enhance the
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Table 1. Five optimization evoking mutators (5/13) designed in MopFuzzer. We use the statement𝑚 = 𝑎+ 𝑡 .𝑓 () as the Mutation
Point (MP). The “Cond” column indicates whether applying this mutator requires MP to contain certain code elements. The
examples show how the mutators insert or change MP. The updated MP (i.e., 𝑀𝑃𝑛) will be used for subsequent iterations.

Mutator Illustration Cond Example
LoopUnrolling-evoke Insert a loop structure before MP. The loop

structure wraps a copy of MP. We do not use
the copy of MP as 𝑀𝑃𝑛 for performance con-
siderations.

✗

+ 𝑓 𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 <𝑁 ; 𝑖++)

+ 𝑚 = 𝑎 + 𝑡 .𝑓 ( ) ;

𝑚 = 𝑎 + 𝑡 .𝑓 ( ) ; // 𝑀𝑃𝑛

LockElimination-evoke Wrap MP in a synchronized body. The syn-
chronized object can be any valid object or
the class constant.

✗

+ 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑 (𝑇 .𝑐𝑙𝑎𝑠𝑠 ) {

𝑚 = 𝑎 + 𝑡 .𝑓 ( ) ; // 𝑀𝑃𝑛

+ }
LockCoarsening-evoke If MP is in a synchronized body, we split this

body into two synchronized bodies with the
same synchronized object. ✓

𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑 (𝑇 .𝑐𝑙𝑎𝑠𝑠 ) {
...

+ } 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑 (𝑇 .𝑐𝑙𝑎𝑠𝑠 ) {

𝑚 = 𝑎 + 𝑡 .𝑓 ( ) ; // 𝑀𝑃𝑛

}
Inlining-evoke If MP contains a binary expression, we re-

place it with a function call, with the variables
involved in the binary expression passed as
arguments to the function.

✓

− 𝑚 = 𝑎 + 𝑡 .𝑓 ( ) ;

+ 𝑚 = 𝑓 𝑜𝑜 (𝑎, 𝑡 .𝑓 ( ) ) ; // 𝑀𝑃𝑛
...

+ 𝑖𝑛𝑡 𝑓 𝑜𝑜 (𝑖𝑛𝑡 𝑥, 𝑖𝑛𝑡 𝑦) { 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 + 𝑦; }
DeReflection-evoke If MP contains a function call or field access,

we replace the function call or field access
with reflection call through the Java reflection
mechanism.

✓

− 𝑚 = 𝑎 + 𝑡 .𝑓 ( ) ;

+ 𝐶𝑙𝑎𝑠𝑠 ⟨?⟩ 𝐶𝑇 = 𝐶𝑙𝑎𝑠𝑠.𝑓 𝑜𝑟𝑁𝑎𝑚𝑒 (“𝑇 ”) ;

+ 𝑚 = 𝑎 +𝐶𝑇 .𝑔𝑒𝑡𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑 (“𝑓 ”) .𝑖𝑛𝑣𝑜𝑘𝑒 (𝑡 ) ; // 𝑀𝑃𝑛

performance of loops. Specifically, it involves replicating
the loop body multiple times to reduce the number of it-
erations, thus decreasing the overhead associated with the
loop control. To proactively trigger this optimization, we
design mutator LoopUnrolling-evoke, which inserts a loop
structure that wraps a copy of the MP before the original
MP. We do not use the copy of MP as 𝑀𝑃𝑛 (i.e., the MP used
for subsequent iterations) for performance considerations
(to avoid nested loop structures). Specifically, if we do not
introduce a copied version of MP, it can be easily wrapped
by nested loops if MopFuzzer chooses this mutator multiple
times. Such nested loop structures can significantly enhance
the overhead of executing this program, thus degrading test-
ing efficiency. Applying this mutator requires no condition.

LockElimination-evoke: Lock elimination optimization
is useful in contexts where multithreading is involved. Specif-
ically, it focuses on removing unnecessary locking and un-
locking operations, and thus enhances the performance of
program by reducing resources spent on lock management.
The LockElimination-evoke mutator aims to evoke the lock
elimination optimization proactively in compilers. In particu-
lar, it wraps the MP in a synchronized body and the synchro-
nized object can be a valid object (e.g., ‘this’ pointer) or a
class constant. Applying this mutator requires no condition.
LockCoarsening-evoke: Lock coarsening is used to re-

duce the overhead of frequently acquiring and releasing locks
in a program. If the same lock is repeatedly acquired and

released in successive operations, coarsening the scope of
the lock can reduce the number of lock operations. This opti-
mization enables a lock to be held for a longer period while
decreasing the total number of lock requests, thereby im-
proving efficiency. The LockCoarsening-evoke mutator aims
to trigger such lock coarsening optimization in compilers.
Applying this mutator requires the MP to be enclosed in a
synchronized body. MopFuzzer will split this body into two
synchronized bodies with the same synchronized object.
Inlining-evoke: Function inlining involves replacing a

function call with the actual code of the function itself. This
means that whenever the program calls a function, the com-
piler directly inserts the entire code of that function at the
call site instead of performing a regular function call. The
primary benefit of this approach is to reduce the overhead of
function calls, such as setting up the call stack and passing
parameters. Most importantly, it can increase the optimiza-
tion scope by optimizing the callee and caller collectively.
The Inlining-evoke mutator requires a binary expression
contained in MP and replaces the binary expression with a
new function call, passing the two operands involved in the
binary expression as arguments to the function. Additionally,
MopFuzzer generates the corresponding declaration of this
function, which performs the same operation as the origi-
nal binary expression and passes the original operands as
parameters. In our implementation, we support operands of
expressions that are primitive data types.
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DeReflection-evoke: Reflection elimination boosts the
performance of code using Java’s reflection APIs. Reflection,
which enables dynamic object creation, method invocation,
and field access at runtime, often slows down execution due
to extra checks and indirect addressing. This optimization
replaces slower reflection calls with direct calls when the
compiler can identify specific methods or field types, thus
enhancing code efficiency. The Inlining-evoke mutator re-
quires a function call or field access in the MP, and replaces
the function call or field access with a reflection call through
the Java reflection mechanism.

3.3 Mutants Generation
After selecting a seed program 𝑝 from the collected cor-
pus C, MopFuzzer will first identify a set of mutatorsM𝑝

that are applicable to 𝑀𝑃 based on their conditions. Among
the designed 13 mutators, 6 types are unconditional and
thus are all applicable to 𝑀𝑃 . For the remaining conditional
mutators, MopFuzzer determines whether 𝑀𝑃 satisfies the
corresponding condition. For example, for the statement of
𝑚 = 𝑎 + 𝑏, since the presence of a binary expression in 𝑀𝑃

satisfies the condition of Inlining-evoke (i.e., it requires a
binary expression and transforms it into a function call),
Inlining-evoke is added toM𝑝 . On the other hand, the ab-
sence of any function calls or field access in the AST means
that DeReflection-evoke is not applicable to 𝑀𝑃 .

After obtainingM𝑝 = {𝑚1,𝑚2, ...𝑚𝑛}, MopFuzzer gathers
the corresponding weights for these mutators, which are
denoted asW𝑝 = {𝑤1,𝑤2, ...𝑤𝑛} where 𝑛 is the size ofM𝑝 .
Then, based onW𝑝 , MopFuzzer randomly selects a mutator
fromM𝑝 and applies it to 𝑀𝑃 , thereby generating a child
mutant 𝑐 . Specifically, we select a mutator by the following
potential function:

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑚𝑖 ) =
𝑤𝑖∑𝑛
𝑗=1𝑤 𝑗

(1)

Accordingly, the higher weight for a mutator, the higher
probability for MopFuzzer to select it. Note that the weight
of each mutator is initially set to 1 in the initialization phase
(Lines 4 in Algorithm 1), and is dynamically updated during
the iterative testing process (see Section 3.4).

3.4 Profile Data-based Guidance
The optimization interaction space is huge, and thus effective
guidance is desired to maximize optimization interactions. In
this study, we examine whether the generated mutants can
actually trigger more optimization behaviors with respect
to both distinct types and frequency. Specifically, we uti-
lize JVM flags provided by JVM to print out the profile data
since the output from such flags can reflect the compiler’s
optimization behaviors. To capture the optimization behav-
iors related to our designed mutators, we identify 15 flags
specifically related to printing optimization behaviors via
manual analysis, which are listed in our online website [35].

Such 15 flags can record 19 types of optimization behaviors.
Via further reviewing the code repository of OpenJDK, we
summarized the regular expression rules to capture the oc-
currences of each optimization behavior from the printed
profile data.

1 // src/hotspot/share/opto/loopTransform.cpp

2 // Unroll the loop body one step

3 bool PhaseIdealLoop::do unroll (...) –

4 // ...

5 if ( TraceLoopOpts ) –

6 if (trip˙count () ¡ (uint)LoopUnrollLimit)–

7 tty -¿print(” Unroll %d(%2d) ”,

unrolled˙count ()*2, trip˙count ());

8 ˝ else –

9 tty -¿print(” Unroll %d ”, unrolled˙count

()*2);

10 ˝ ˝ ˝

Listing 4. Illustration of capturing the optimization behavior
for loop unrolling using regular rules: Unroll [0-9]+

Take flag TraceLoopOpts as an example, it can print the in-
formation about optimization behaviors like loop unrolling
and loop peeling. Particularly, Listing 4 shows code snip-
pets from OpenJDK for loop unrolling optimization. When
TraceLoopOpts is enabled, and if the JVM performs a loop un-
rolling optimization, it prints either “Unroll %d(%2d)” or
“Unroll %d”. Therefore, we can design a regular expression
rule “Unroll [0-9]+” to capture the frequency of the loop
unrolling optimization performed by JVM. We perform man-
ual investigation for all the 15 selected flags and then design
the regular expression rules accordingly, which are listed
in our website [35]. To calculate the frequency of different
optimization behaviors, MopFuzzer uses a 19-dimensional
vector named Optimization Behavior Vector (OBV), where
each dimension records the frequency of the correspond-
ing optimization behavior. Such a vector can reflect the in-
teraction among diverse optimizations since it records both
optimization types and frequencies. Let us consider 𝑂𝐵𝑉𝑝 =

⟨1, 0, 0, 0, . . . , 0⟩ for a parent and 𝑂𝐵𝑉𝑐 = ⟨2, 2, 2, 0, . . . , 0⟩ for
a child mutant, we can measure the increment between𝑂𝐵𝑉𝑝
and 𝑂𝐵𝑉𝑐 to examine whether new optimization behaviors
are triggered. Therefore, we introduce a metric, Δ, which
is determined as the Euclidean distance between 𝑂𝐵𝑉𝑝 and
𝑂𝐵𝑉𝑐 , formally defined as:

Δ =

√√
𝑛∑︁
𝑖=1
(𝑚𝑎𝑥 (0,𝑂𝐵𝑉𝑐𝑖 −𝑂𝐵𝑉𝑝𝑖 ))2 (2)

where 𝑂𝐵𝑉𝑝𝑖 and 𝑂𝐵𝑉𝑐𝑖 denote the 𝑖𝑡ℎ elements of vectors
𝑂𝐵𝑉𝑝 and 𝑂𝐵𝑉𝑐 respectively. In this formula,𝑚𝑎𝑥 (0, 𝑥) en-
sures that only increases are considered while those reduc-
tions will be ignored. The summation extends over all vec-
tor elements, capturing the combined increment across all
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monitored optimization types and their frequencies. In our
example, Δ = 3 is derived from the increment for the first
three items of the vector.

The value of Δ reflects the increment of optimization be-
haviors interactions induced by applying a mutator. Thus,
a higher Δ suggests a greater likelihood that applying this
mutator will evoke the compiler in triggering different opti-
mization behaviors w.r.t. types and frequency. Therefore, if a
mutator results in a higher Δ , we opt to increase its weight
𝑤𝑚 . This adjustment makes the mutator more likely to be
chosen in the next round. Specifically, we update the weight
of mutator𝑚 using the following formula:

𝑤𝑚 = 𝑤𝑚 ∗ (1 + Δ/| |𝑂𝐵𝑉𝑐 | |) (3)

where | |𝑂𝐵𝑉𝑐 | | measures the magnitude of 𝑂𝐵𝑉𝑐 and 𝑤𝑚

is the weight of the mutator 𝑚. This formula strategically
adjusts the weight of mutators that induce more optimization
behaviors (i.e., a larger Δ value) during the fuzzing process,
thus enabling them to be selected with higher probabilities
in subsequent process.

Rationale Behind the Weighting Scheme. The weight-
ing scheme explores complex interactions among various
optimizations rather than merely increasing the total num-
ber of performed optimizations. By employing the Euclidean
distance (Δ), we emphasize the changes across all types of
optimizations, rewarding mutators that induce diverse be-
haviors. The alternative scheme of using the sum of opti-
mization occurrences as weights was not adopted due to
the occurrences of different types of optimization behav-
iors are imbalanced. For instance, after applying a mutator,
certain behaviors (e.g., Inlining) might increase from 100 to
200 occurrences, while some only increase from 1 to 2 (e.g.,
LoopUnswitching) since they are harder to trigger. In this
example, taking the sum (i.e., 202) as weight would be biased
to mutators that triggering Inlining behaviors. Formula 3
can mitigate this issue. It calculates the Euclidean distance
between the optimization behavior vectors of a parent and
its child, and normalizes their distance by the magnitude
of the child’s OBV (i.e., | |𝑂𝐵𝑉𝑐 | |). The normalization adjusts
weights to promote those mutators that not only trigger op-
timizations but also enhance the variety and frequency of
optimization behaviors. Note that emphasizing frequency
is also important, as some bugs can only be triggered when
an optimization occurs multiple times. For instance, JDK-
8324174 [22] exposes the bug through the use of three nested
locks. Therefore, increasing the weight of mutators that have
already been triggered is justified. Consequently, we do not
simply increase the weight of mutators that have not yet
been activated since this alternative will lose its effectiveness
once each mutator has been selected at least once.

3.5 Bug Detection and Test case Reduction
MopFuzzer detects bugs by the following two test oracles:

Crash: A bug is detected if the target JVM crashes dur-
ing runtime. The cause of the crash can be examined in an
automatically generated file named hs err pid.log.

Miscompilation: After reaching the maximum number of
iterations, we perform differential testing on the final mutant
𝑐★. Specifically, 𝑐★ is executed using different JVMs, includ-
ing the Long-Time-Support (LTS) versions (i.e., 8, 11, 17, 21)
and the mainline version (i.e., 23) of OpenJDK and OpenJ9.
We then compare the consistency of the program’s output.
However, inconsistent results do not always signify real bugs,
as they might stem from the use of random numbers, leading
to unpredictable outcomes. Thus, we further carry out man-
ual investigations to discern bugs and verify whether such
inconsistencies are indeed caused by optimization errors.
Test Case Reduction.MopFuzzer often generates com-

plex mutants by applying diverse mutators iteratively at
the same program point. As a result, the test cases grow in
size and trigger more optimization behaviors. However, the
complexity prevents developers from easily understanding
the root cause of the bugs. In fact, the root cause of these
bugs could often be traced back to a few key structures. For
example, triggering bug JDK-8324174 [22] requires a nesting
of three layers of lock structures. To simplify this process,
we adopt a semi-automated approach to reduce the size of
the test case. Specifically, we manually strip away code in-
serted by MopFuzzer until the test case only involves key
structures, ensuring that removing any further code would
not trigger the bug. Lastly, we employ a leading test case
reduction tool, perses [43], to further decrease the size of a
test case before reporting the bug.

4 Evaluation
This section introduces the experiments performed to eval-
uate the effectiveness and usefulness of MopFuzzer via an-
swering the following research questions.

• RQ1 (Usefulness): Can MopFuzzer detect new JVM
JIT compiler bugs?
• RQ2 (Effectiveness): Can MopFuzzer outperform the

state-of-the-arts in terms of code coverage and opti-
mization interactions?
• RQ3 (Components’ Contribution): How is the con-

tribution of the major components of MopFuzzer?

4.1 Experiment setup
Target JVMs. We selected popular JVM implementations,
OpenJDK [38] and OpenJ9 [37], as our test targets. Specifi-
cally, we compiled the latest debug builds of the Long-Term
Support (LTS) versions (i.e., 8, 11, 17, 21) and the mainline
version (i.e., 23) of OpenJDK and OpenJ9 in our experiments.

Baselines. We compare MopFuzzer with two JVM testing
technologies JITFuzz [50] and Artemis [28] since they are the
latest state-of-the-art tools. For instance, Artemis reported

https://bugs.openjdk.org/browse/JDK-8324174
https://bugs.openjdk.org/browse/JDK-8324174
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Table 2. Status of the reported bugs by MopFuzzer

Category OpenJDK OpenJ9 Total
Numbers of reported bugs

Confirmed 45 14 59
In Progress 19 9 28
Fixed 7 4 11
Duplicate 5 1 6
Not Backportable 14 0 14

Types of reported bugs
Crash 39 2 41
Miscompilation 6 12 18

Table 3. Distribution of the detected bugs across OpenJDK
LTS and mainline versions

Affected Version JDK-8 JDK-11 JDK-17 JDK-21 Mainline
#Bugs 26 9 13 9 12
#Not Backportable 12 2 0 0 0

its superior performance compared with other baselines re-
cently [28]. Additionally, similar to MopFuzzer, both JITFuzz
and Artemis have designed mutators to validate specific opti-
mization techniques. In contrast, other fuzzers employ more
generic mutators that do not target specific optimization
strategies and hence are excluded as baselines. For fair com-
parisons, we use the same seed pool (i.e., Regression Test
Suites of OpenJDK [42]) for evaluation.
Parameters. Our practice suggests that when exploring

the compiler’s optimization interactions, the mutants gener-
ated after 50 iterations can balance well between cost and
effectiveness. Since MopFuzzer introduces loop structures
into seed programs, an excess of such structures will sig-
nificantly impact the execution efficiency of the generated
mutants. Therefore, we empirically set the MAX Iterations
to 50 in our evaluations to test whether the JVM can handle
optimization interactions correctly.
Environment. Our evaluation was conducted on one

Linux server with two Intel(R) Xeon(R) Gold 6248R CPUs
and 256GB RAM. When comparing code coverage between
MopFuzzer and baselines, we use the configuration option
--enable-native-coverage, which enables native com-
pilation with the code coverage data. In particular, we fo-
cus on the coverage statistics of HotSpot and ignore other
JDK components. When constructing the Optimization Be-
havior Vector, we set JVM command flags (i.e., -Xcomp -
XX:CompileCommand=“compileonly,className::methodNa
me”) to force compilation of the target method. We also pass
the 15 JVM flags (as shown in our website [35]) to record the
runtime optimization behaviors.

4.2 RQ1: Usefulness of MopFuzzer
Detected Bugs. We applied MopFuzzer to test the latest de-
bug build of OpenJDK and OpenJ9. During the three months

Table 4. The distribution of the affected JIT components. “#”
denotes the number of bugs detected by MopFuzzer.

HotSpot Component # OpenJ9 Component #
Global Value Number., C2 10 Redundancy Elimination 4
Ideal Loop Optimizat., C2 7 Loop Optimization 3
Code Generation, C2 7 Pattern Recognition 2
Ideal Graph Building, C2 5 Dead Code Elimination 1
Macro Expansion, C2 4 Escape Analysis 1
Cond. Const. Prop., C2 1 SIMD Support 1
Runtime 4 Value propagation 1
Other JIT Compone. 7 Runtime 1

of testing, MopFuzzer has detected 45 bugs in OpenJDK and
14 bugs in OpenJ9. A detailed breakdown of the bug statistics
is presented in Table 2. We found one bug (i.e., Issue-18919)
can also be detected by Artemis. Other bugs cannot be de-
tected by the baselines since the key code structures trigger-
ing the bug are difficult for Artemis and JITFuzz to generate
(see Section 4.3). Among all the confirmed bugs, most (41
out of 59) are crashes. Moreover, among the bugs reported in
OpenJDK, two are marked with priority P2, 13 with P3, and
30 with P4. Table 5 shows the distribution of detected bugs
across OpenJDK LTS and mainline versions. Note that one
bug can affect multiple versions. Specifically, MopFuzzer can
detect bugs in each LTS version, and it can also identify 12
bugs in the mainline version. Such results demonstrate its
effective bug detection capabilities. We notice that some bugs
identified in earlier versions (e.g., JDK-8) are commented by
developers as non-backportable. For instance, the developer
commented on JDK-8324853, “Fixed in JDKs 19, 17, 11. Not
backported to JDK 8.” Particularly, the developer explained
via email “In that case it’s expected that previous JDK releases
are affected…In most cases there is probably a good reason
for why we decided to not backport.” We conjecture that the
decision might stem from significant code changes between
higher and lower versions, making it challenging to backport
these bug fixes. Therefore, we classify these bugs as “Not
Backportable” and avoid reporting such bugs in subsequent
tests. There are 12 bugs in JDK-8 and 2 bugs in JDK-11 that
are marked as “Not Backportable”.

We also find that all the test seeds triggering bugs involve
various JVM optimization behaviors. It is the interaction of
these behaviors that challenges the JVM’s ability to handle
optimizations correctly. For instance, MopFuzzer discovered
a P3 level bug JDK-8322743. The bug-triggering case evokes
the JVM to perform optimizations related to loops, lock nest-
ing, function inlining, and escape analysis. Eventually, this
bug was caused by the incorrect handling of interactions
among these optimizations.

Affected JIT Compiler Components. The 59 confirmed
bugs affect different JVM components, which are listed in
Table 4. For HotSpot, the majority of bugs impact the C2
compiler. This makes sense since C2 is much more complex

https://github.com/eclipse-openj9/openj9/issues/18919
https://bugs.openjdk.org/browse/JDK-8324853
https://bugs.openjdk.org/browse/JDK-8322743
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Table 5. The top five mutators and mutator pairs involved
in the 59 bug-triggering test cases

Top Mutators Ratio Top Mutator Pairs Ratio
LoopUnroll. 30.5% LoopUnroll. + LockElim. 13.6%
LockElim. 25.4% LockElim. + DeReflect. 8.5%
DeReflect. 22.0% DeReflect. + EscapeAnalys. 8.5%
LoopUnswitch. 16.9% Deopt. + DeadCodeElim. 8.5%
EscapeAnalys. 16.9% LoopUnroll. + LockCoarsen. 6.8%

than C1 and employs more aggressive optimizations. The
component most affected isGlobal Value Numbering, which is
designed to identify expressions in a program that compute
the same value. Regarding OpenJ9, there are 4 bugs that
affect Redundancy Elimination. If this component incorrectly
removes certain code, it can easily lead to miscompilation.

Valuable Mutators. To ascertain the effectiveness of var-
ious mutators in bug detection, we analyzed the 59 test
cases (after reduction) that trigger bugs. Specifically, we find
that each mutator is involved in at least one test case, in-
dicating that all proposed mutators are essential. Delving
deeper, we find that certain mutators and their combina-
tions are more frequently involved in triggering test cases.
Table 5 shows the ratio of the top mutators and mutator
pairs involved in the test cases. Specifically, mutators most
frequently associated with bugs were LoopUnrolling-evoke
(30.5%), LockElimination-evoke (25.4%), andDeReflection-evoke
(22.0%). Moreover, the combination of LoopUnrolling-evoke
and LockElimination-evoke was particularly potent, account-
ing for 13.6% of the cases. Such observations suggest that
JVM developers should pay more attention to these optimiza-
tions and scenarios to ensure the JVM’s correctness.

ACase Study of JDK-8312741. To understand how Mop-
Fuzzer maximizes the compiler optimization interactions, we
conduct a case study of the mutants that trigger JDK-8312741.
In particular, we discover that the 48𝑡ℎ mutant causes the
compiler to crash. Then, we plot the curve to illustrate how
the optimization behavior changes during iterations. Specifi-
cally, we calculate the Euclidean distance by comparing the
OBV of 𝑖th mutant and the original seed throughout the 48
iterations. The curve is shown in Figure 1. We can find that
the curve starts with relatively small values, and escalates to
higher values as the iterative process. This pattern suggests
that as iterations continue, the mutant will trigger various op-
timization interactions in the compiler significantly. Second,
since the bug is triggered by the 48𝑡ℎ mutant, this suggests
that a certain level of optimization interactions must be ac-
cumulated before the bug is triggered. Notably, there are
several large jumps (e.g., the 12𝑡ℎ mutant), implying drastic
changes at certain iterations. We speculate that this is caused
by the inserted code in these rounds forming more complex
code structures with the previously inserted code and the
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Figure 1. Increment of the Euclidean distance, each point
is calculated by comparing the OBV of the 𝑖𝑡ℎ mutant and
the original seed. The 48𝑡ℎ mutant triggers JDK-8312741. We
mark some “large jump” points in red.

seed’s own code, prompting the compiler to handle a greater
amount of optimization interactions.

4.3 RQ2: Effectiveness of MopFuzzer
In this RQ, we compare MopFuzzer with JITFuzz and Artemis
on OpenJDK17 with respect to the achieved code coverage,
the increment of optimization behaviors, and bug detection
capability. For code coverage, we focus on the JVM’s main
components: C1, C2, Runtime, and GC (Garbage Collection).
We repeat each experiment three times and calculate the
average value to minimize the impact of randomness. For
the increment of optimization behaviors, we measure the
Euclidean distance of OBV between the final mutant and
the original seed. The mechanism adopted by such tools are
different, and we select the final mutant 𝑐★ for each tool as
follows: (1) For MopFuzzer, we consider the 50𝑡ℎ mutant
as 𝑐★; (2) For JITFuzz, the 1, 000𝑡ℎ mutant (JITFuzz iterates
1,000 rounds for one seed by default) is deemed as 𝑐★; (3)
As for Artemis, which does not perform seed scheduling
nor mutate seeds iteratively, we use the 1𝑠𝑡 mutant as 𝑐★.
Accordingly, each tool processes a different number of seeds
within the same time frame. We ensure fairness by setting
the same fuzzing time, which is 24 hours.
Code Coverage. Figure 2 shows the results in terms of

code coverage, which is averaged over the repeated experi-
ments. We can see that MopFuzzer surpasses both baselines
in terms of line coverage. Specifically, it achieves a 63.7%
line coverage across the four primary components, while
JITFuzz and Artemis attain 62.0% and 62.8% respectively. It
is important to highlight that the four main components of
OpenJDK17 encompass roughly 126K lines of code. There-
fore, an improvement of just 1% in terms of code coverage
can result in thousands of new lines being covered. Besides,
many studies [20, 24] have shown that higher coverage does
not necessarily lead to detecting more bugs. Although Mop-
Fuzzer does not stand out in terms of coverage, our focus on
maximizing optimization interactions can generate effective
seeds that eventually lead to deeper bugs.

https://bugs.openjdk.org/browse/JDK-8312741
https://bugs.openjdk.org/browse/JDK-8312741
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Figure 2. Line coverage achieved by MopFuzzer, JITFuzz,
and Artemis. The “Summary” includes the average results
for the four components.

Looking into individual components, MopFuzzer outper-
forms in the C1 and C2 components, achieving the highest
coverage of 75.5% and 67.9%. However, JITFuzz excels in the
GC component, achieving a high coverage of 62.0%, which
is also significantly higher than other tools. In conclusion,
the mutants generated by MopFuzzer can prompt the JVM
to trigger more optimization behaviors, resulting in higher
code coverage, especially with respect to C1 and C2.

The Increment in Optimization Behaviors. Since JIT-
Fuzz and Artemis have designed mutators for optimization
behaviors, they can also trigger a certain degree of opti-
mization interactions. The boxplot in Figure 3 presents the
comparison between MopFuzzer, JITFuzz, and Artemis. We
can find that MopFuzzer significantly outperforms JITFuzz
and Artemis in enhancing optimization behaviors, with a
median Euclidean distance of 3,881. This suggests that Mop-
Fuzzer is generally more effective in activating various com-
piler optimizations. In contrast, while JITFuzz and Artemis
also promote optimization behaviors, their impact is less
pronounced than that of MopFuzzer. Specifically, although
JITFuzz employs certain optimization triggering mutators
and also iterates each seed for 1,000 times, it achieves the
lowest median Euclidean distance of 1,192. This indicates
that the mutants generated by JITFuzz are ineffective in stim-
ulating a wide range of compiler optimizations. In particular,
the mutators of JITFuzz involve limited types of optimization
behaviors and overlook their interactions, leading to fewer
optimization interactions compared to MopFuzzer. Artemis
employs three mutation templates targeting method calls,
loops, and uncommon traps, which can only trigger opti-
mization interactions between the inserted mutator and the
original code structures due to its non-iterative strategy. Be-
sides, its designed mutators do not interact with each other.
Comparison of Bug Detection Capability. To assess

the bug detection capabilities of MopFuzzer against the base-
lines, we evaluate the number of bugs identified by each tool
within a 24-hour period using the same seed pool. The results,
as shown in Table 6, indicate that MopFuzzer detected a total
of 6 bugs compared to 4 by Artemis and 2 by JITFuzz. Ad-
ditionally, the bugs detected by MopFuzzer involve a wider
range of HotSpot components (i.e., five components). Such

Table 6.Comparison of bug detection capability on OpenJDK
for all approaches within 24 hours. The number in brackets
denote the bugs are uniquely detected by the approach.

Components MopFuzzer Artemis JITFuzz
Global Value Number., C2 2 (2) 0 (0) 0 (0)
Ideal Loop Optimizat., C2 1 (1) 2 (2) 0 (0)
Macro Expansion, C2 1 (1) 0 (0) 0 (0)
Cond. Const. Prop., C2 1 (1) 0 (0) 0 (0)
Regsister Allocation, C2 0 (0) 1 (1) 0 (0)
Ideal Graph Building, C2 0 (0) 1 (1) 0 (0)
Value Mapping, C1 0 (0) 0 (0) 2 (2)
Runtime 1 (1) 0 (0) 0 (0)
Total 6 (6) 4 (4) 2 (2)

results reflect that MopFuzzer outperforms both JITFuzz and
Artemis across multiple components of the HotSpot.

MopFuzzer is especially effective in uncovering complex
bugs through generating test cases impacting multiple phases
of JIT compilations. For instance, detecting JDK-8322743
demonstrates its ability to handle optimizations including
escape analysis, lock elimination, autobox elimination, and
deoptimization. In contrast, Artemis and JITFuzz focus on
fewer optimization strategies. Specifically, Artemis only fo-
cuses on designing loop-related mutators aiming to validate
the correctness of different JIT compilation choices. It in-
corporates these mutators to make certain parts of the code
“hot”, thereby controlling whether these segments are com-
piled or not by JIT. Even if Artemis were enhanced with the
same mutators as provided by MopFuzzer, it cannot suffi-
ciently validate whether the target JVM can handle multiple
optimization behaviors correctly. This is because Artemis
does not adopt an iterative strategy, and thus these applied
mutators would not interact with each other. However, we
acknowledge that Artemis-generated test cases feature more
complex loop structures, an area that MopFuzzer lacks. In
fact, there are multiple ways to design loop-related and other
mutators, and in this study, we explore just one way. In the
future, we plan to explore additional implementations of
mutators to enhance MopFuzzer’s bug detection capabilities
in specific JIT components.

JITFuzz, focusing merely on escape analysis, function in-
lining, and simplification, applies mutators iteratively but
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https://bugs.openjdk.org/browse/JDK-8322743
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not in a nested manner. As a result, complex optimization
behaviors involving multiple phases are not sufficiently ana-
lyzed, leading to less effective bug detection. Although equip-
ping JITFuzz with MopFuzzer’s mutators could potentially
enhance its capabilities, its coverage-oriented strategy has
been shown to be less effective in uncovering bugs, as indi-
cated in Table 6. Furthermore, the code inserted into the seed
programs by JITFuzz is independent of each other, making
it challenging to generate complex test cases to check how
the JVM handles optimization interactions among various
optimization behaviors.

4.4 RQ3: Contribution of Major Designs
In this section, we evaluate the key components of Mop-
Fuzzer. Specifically, we design the following two variants
and compare them with MopFuzzer in terms of the incre-
ment in optimization behaviors and bug detection capability.
• MopFuzzer𝑔: This variant randomly selects a mutator at

each iteration without guidance based on profile data. This
variant can reveal whether the guidance of profile data can
accelerate the generation of effective mutants, thereby
triggering more optimization behaviors.
• MopFuzzer𝑟 : This variant randomly selects a statement

rather than focusing on a fixed mutation point to mutate
at each iteration. This variant can reveal whether the muta-
tion generation strategy adopted by MopFuzzer, inserting
code nested around or adjacent to the existing mutated
code, can enable the compiler to trigger a greater amount
of optimization interactions.
Optimization Behavior Exploration. We employ the

same setting as RQ2 to test MopFuzzer and its two variants
and measure the Euclidean distance of OBV between the
final mutant (i.e., the 50𝑡ℎ mutant) and the original seed.
The boxplots in Figure 4 show the comparison results. We
can find that MopFuzzer outperforms its variants in trig-
gering more optimization behaviors in the compiler. In con-
trast, MopFuzzer𝑔, which disables guidance based on profile
data, exhibits a significant decrease in this metric (i.e., 19.9%
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Figure 5. The bugs detected by MopFuzzer and its variants

= (3881-3107)/3881), indicating that the absence of profile-
guided mutator selection may lead to less effective mutant
generation. We believe the guidance plays a pivotal role in
accelerating the generation of effective mutants.

Striking difference is observed for variant MopFuzzer𝑟 ,
which selects a random statement to mutate each time. This
variant achieves drastically lower values (i.e., degraded by
65.1% = (3881-1353) / 3881) compared to the other two, sug-
gesting that random statement selection significantly ham-
pers the effectiveness of the tool in triggering optimization
interactions. This phenomenon reaffirms our observation:
if the code inserted by MopFuzzer, being nested around or
adjacent to the existing ones, can effectively enhance the
effectiveness of the generated mutants.
Bugs Detection Capability. We further investigate the

bug detection capability by comparing MopFuzzer and the
two variants within 24 hours. Figure 5a illustrates the num-
ber of detected bugs. We can find that MopFuzzer uncovers
more bugs as time progresses. In contrast, MopFuzzer𝑟 only
detected a limited number of bugs. This shortfall is attrib-
uted to the method adopted by MopFuzzer𝑟 to generate new
seeds, which do not nest or adjoin optimization evoking mu-
tators, thereby reducing the interactions between different
optimization behaviors.

Further, we analyze the overlap in bug detection across
different variants, as shown in Figure 5b. In this experiment,
two bugs with the same root cause are deemed as the same
bug. The data reveals that MopFuzzer can identify nearly
all bugs detected by the other variants. There is just one
exception: a single bug identified by MopFuzzer𝑔 but missed
by MopFuzzer. This finding aligns with our observation that
guidance speeds up bug detection in MopFuzzer. Moreover,
the fact that MopFuzzer𝑔 can detect about 5/6 of the bugs
found by MopFuzzer underscores its strong practicality. Con-
sequently, for the JVM implementations that offer few VM
flags, MopFuzzer𝑔 can be applied and can also demonstrate
promising performance in detecting bugs.

5 Discussion
5.1 Limitations of MopFuzzer
MopFuzzer utilizes the profile data to guide the fuzzing pro-
cess, thus boosting its effectiveness. However, such a strat-
egy is limited by the JVM-provided flags, and thus Mop-
Fuzzer records a limited range of optimization behaviors.
For instance, the JVM does not offer flags for logging behav-
iors related to de-reflection, preventing MopFuzzer from cap-
turing such behaviors. This limitation hinders MopFuzzer’s
ability to flawlessly approximate all optimization interac-
tions. Nevertheless, we find that the bug detection capability
of MopFuzzer is not compromised by the limited profile data.
In particular, the results in RQ3 show that even with guid-
ance disabled (i.e., MopFuzzer𝑔 ), it still delivers effective
bug detection capability (see Section 4.4), which reflects the



Validating JVM Compilers via Maximizing Optimization Interactions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

practicality of MopFuzzer. Besides, in the white-box testing
setting, we can also proactively instrument extra log infor-
mation in the VMs to record more optimization behaviors.

5.2 The Generalizability of MopFuzzer
Testing Other JIT Compilers. Many modern Language
Virtual Machines (LVMs) use JIT compilation to boost ex-
ecution efficiency. For example, there are V8 Engine [47]
for JavaScript, ART [1] for Android, and CPython [9] for
Python. We believe the core components of MopFuzzer can
be generalized to other LVMs for bug detection. In particu-
lar, our design involves various mutators that evoke specific
types of JIT optimizations. We categorize these mutators
into two groups: language-agnostic and language-specific.
Language-specific mutators rely on particular mechanisms
of Java, including LockElimination-evoke, Lock Coarsening-
evoke, Deoptimization-evoke, AutoboxElimination-evoke, and
DeReflection-evoke. Adapting these mutators is necessary
to align with the specific language constructs of the tar-
get LVM. For instance, testers for JavaScript Engines could
implement DeReflection-evoke referring to JavaScript’s reflec-
tion mechanisms. On the other hand, other mutators that
are independent of Java-specific mechanisms fall into the
language-agnostic category. These mutators can be applied
directly with minimal modifications, as their optimizations
are commonly supported by JIT compilers across various
LVMs. Furthermore, our strategy of iteratively applying mu-
tators at a fixed mutation point has been proven effective (see
Section 4.4). Disabling it significantly reduces the number of
detected bugs and triggered optimization behaviors.

Testing Non-JIT Compilers. While many modern LVMs
utilize JIT compilation to enhance execution efficiency, sub-
stantial environments still rely on non-JIT (static or AOT,
Ahead-of-Time) compilation. Examples include GCC [16] for
C/C++ and R8 Compiler for Android [8]. To test such non-
JIT compilers, we can adapt mutators that do not require
runtime information, such as LoopUnrolling-evoke, Inlining-
evoke. For example, LoopUnrolling-evoke can be used to ex-
amine how loop optimizations are handled in static compila-
tion processes. Regarding runtime behaviors, since non-JIT
compilers do not compile code at runtime, we can utilize
compiler diagnostic information instead. These diagnostics
help understand the decisions made during the optimization
process. For instance, the option “-fopt-info-loop” in GCC
reveals decisions related to loop-related optimizations, and
such information can be used to guide the fuzzing process.
Therefore, our ideas can be adapted to test non-JIT compilers.

6 Related Work
We introduce works related to JVM or compiler testing.

JVM Testing. As the stability of the JVM gains increasing
attention, various techniques for testing the JVM have been

developed [6, 7, 23, 26, 28, 50–53]. Classfuzz [7] guides the
mutation process of seed files using code coverage informa-
tion. Classming [6] takes this further by mutating seed files
through altering control flows and delving deeper into JVM
testing. JavaTailor [53] mutates seed files by inserting in-
gredients extracted from historical bug-revealing programs.
JOpFuzzer [23] tests JIT compiler behavior by combining
compiler options with source code mutation. However, none
of these approaches focus on optimization interaction. In
this study, MopFuzzer originally validates JVM compilers
via maximizing optimization interactions. We hope our work
can shed light on the JVM testing for future research.
Testing Other Compilers. Plenty of approaches have

been proposed to test compilers for various programming
languages [5, 54, 55], including C/C++ [4, 12, 29–32, 45, 46],
JavaScript [2, 17, 44, 48], Rust [40], etc. Aamodt et al. [29]
proposed a method to identify unstable code due to unde-
fined behavior by comparing the compilation results of the
same program by different compilers of C/C++. Theodoridis
et al. [45, 46] introduced a method to analyze compiler op-
timization effectiveness and identify missed opportunities
using dead code elimination. Wang et al. [48] used an input
wrapping template to trigger JIT compilation in JavaScript
engines and make tests self-oracle-aware. Bernhard et al. [2]
introduced a technique that leverages the relationship be-
tween the JavaScript engine’s interpreter and its JIT compiler
as a mechanism for detecting bugs in JavaScript engines.
Sharma et al. [40] developed the random program generator
for Rust compiler testing, producing programs that align
with Rust’s intricate type system and enforce its borrowing
and lifetime rules, ensuring well-defined outcomes.

7 Conclusion
This paper presents a novel approach to test JVM JIT compil-
ers, especially focusing on the interactions among various
optimization behaviors. Specifically, it employs a set of origi-
nally designed optimization-evoking mutators to proactively
trigger various optimization behaviors, and then adopts an
iterative process to generate mutants guided by the runtime
profile data. We substantiate our idea as MopFuzzer, and it
has uncovered 59 bugs, of which 45 are in OpenJDK and 14 in
OpenJ9. Although MopFuzzer has only implemented a lim-
ited number of optimization-evoking mutators and utilized
19 runtime optimization behaviors to guide the generation
of mutants, our idea is extensible. In particular, a broader
range of optimization evoking mutators can be adapted to
test JIT compilers for other language virtual machines.
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A Artifact Appendix
A.1 Abstract
MopFuzzer is a tool for automated testing of the JDK, uti-
lizing various optimization evoking mutators and profile
data-based guidance to rigorously test JVM JIT compilers by
maximizing optimization interactions. Our artifact includes
the source code of MopFuzzer, the mutation seed files re-
quired during the execution of MopFuzzer, and a README
file describing the installation process and the bugs discov-
ered by the tool.

A.2 Artifact check-list (meta-information)
• Algorithm: Optimization evoking mutators and profile

data-based guidance.
• Compilation: Maven with JDK17
• Data set: JDK Regression Tests
• Run-time environment: Linux, Windows.
• Hardware: Intel x86 64 CPU
• Metrics: Bug detection ability, OpenJDK line coverage and

Euclidean distance calculated from profile information. More
detail metrics settings are listed in the paper.
• Output: Java code that can trigger a JDK crash or mis-

compilation.
• Experiments: semi-automated
• How much disk space required (approximately)?: 5GB
• How much time is needed to prepare workflow (ap-
proximately)?: 30 minutes
• How much time is needed to complete experiments
(approximately)?: 24 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License,

Version 2.0, January 2004
• Archived (provide DOI)?: 10.5281/zenodo.11484183

A.3 Description
A.3.1 How to access. Archived content can be down-
loaded from the DOI Link [36] or accessed via the the Github
Link [35].

A.3.2 Hardware dependencies. As some of the experi-
ments need to get the line coverage information of the JDK,
a larger hard disk space is required on the hardware for com-
piling OpenJDK. We recommend that you leave about 20
GB of free disk space for the installation and operation of
MopFuzzer and the target JDKs.

A.3.3 Software dependencies. The JDKs under test need
to be installed manually, and the rest of the dependencies
have been configured in the maven project of the artifact.
MopFuzzer needs the debug build of JVM, so users should
download the source code of JVM and set the debug flag.
Here we take the OpenJDK Mainline as an example.
# git clone https://github.com/openjdk/jdk.git
# cd jdk
# bash configure --enable-debug
# make images

A.4 Installation
Please obtain the source code for MopFuzzer from the pro-
vided the DOI Link [36] or Github Link [35]. MopFuzzer is
developed as a Maven project using JDK17. To configure and
run MopFuzzer, you can import it directly into your IntelliJ
IDEA workspace as a Maven project, or you can use the
command mvn compile and mvn package in the command
line to install other dependencies.

A.5 Evaluation and expected results
Detailed instructions on how to run MopFuzzer can be found
in the README file, which contains a list of how to install
MopFuzzer, how to run it, and a list of bugs found.

Example commands to run MopFuzzerjar file:
# differential testing of two target jdks
path/to/java17/bin/java -jar MopFuzzer.jar

--project˙path benchmarks/JavaFuzzer/tests1/
--target˙case Test0001
--jdk path/to/JDK1/bin/,path/to/JDK2/bin/
--enable˙profile˙guide true

# Testing a single jdk using regression seeds
path/to/java17/bin/java -jar MopFuzzer.jar

--project˙path benchmarks/jtreg17/
--target˙case compiler.codegen.TestBooleanVect
--jdk path/to/targetJDK/bin/
--enable˙profile˙guide true

It is expected that the generated mutants are stored in the
mutants directory. If these mutants have exceptions during
the run with target JDK, then MopFuzzer logs these excep-
tions in the log file corresponding to the mutant. In addition,
the log file records the mutators used for each mutation and
the related commands.

https://doi.org/10.5281/zenodo.11484183
https://doi.org/10.5281/zenodo.11484183
https://github.com/CGCL-codes/MopFuzzer
https://github.com/CGCL-codes/MopFuzzer
https://doi.org/10.5281/zenodo.11484183
https://github.com/MopFuzzer/MopFuzzer
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