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Abstract
The number of disclosed vulnerabilities in open-source projects has
been increasing steadily over the years, and thus it is important to
deploy patches to repair vulnerabilities in a timely manner. How-
ever, due to the widespread reuse and customization of open-source
software, there are often multiple versions or branches of the same
project that co-exist in the ecosystem. Therefore, it is often challeng-
ing and tricky to guarantee that an exposed vulnerability can be
repaired thoroughly. Driven by this, plenty of 1-day vulnerability
analysis tools have been proposed recently, such as function-level
vulnerability detection and patch presence test tools. Despite the
fact that code evolution is common for open-source projects, exist-
ing analysis tools often neglect the important fact that the patched
code is also constantly evolving. In this study, we take the first look
to systematically investigate the phenomenon of security patch evo-
lution in open-source projects. In particular, we performed extensive
experiments on a large-scale dataset containing 1,046 distinct CVEs
with 2,633 patches collected from popular open-source projects
(e.g., linux, openssl). This study reveals interesting yet important
findings with respect to the aspects of patch evolution frequency,
patch evolution patterns, and the evolution impact on downstream
1-day vulnerability analysis tools. We believe that this study can
shed important light on future researches on patch analysis.
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1 Introduction
Software vulnerability is one of the major threats to cyber secu-
rity. A recent report by Cybersecurity Ventures shows that cyber-
crime will cost the world $8 trillion’s loss in 2023. Unfortunately,
open-source software (OSS) often suffer from abundant and diverse
vulnerabilities, and the number of disclosed vulnerabilities in open-
source projects has been increasing steadily since 2009 [1, 14, 35].
Such vulnerabilities can cast significant security threats to the
whole ecosystem. Therefore, patching and repairing exposed vul-
nerabilities in a timely manner is of significant importance to avoid
potentially catastrophic consequences [20, 21, 45].

However, due to the widespread reuse and customization of open-
source software, there are often multiple versions or branches of the
same project co-existing in the ecosystem. Therefore, it is challeng-
ing and tricky to guarantee that an exposed vulnerability can be
repaired thoroughly. To address this problem, many function-level
vulnerability detection and patch presence test approaches have
been proposed [6, 9, 10, 13, 37, 54]. The former type of such works
aims to detect the enclosed libraries of a project to see if it contains
existing vulnerabilities; while the latter aims to check whether a
known vulnerability has been patched in the target software. All of
the above techniques function with a dataset of known vulnerabili-
ties with the corresponding patches, which are often collected from
the National Vulnerability Database (NVD [27]) as well as the code
repositories hosted on GitHub. Commonly, the commit that fixes
the corresponding vulnerability is denoted as the patch, and the
version before the commit is denoted as the vulnerable code while
the version after it is denoted as the patched code. Most of existing
analysis are carried out based on the patches and vulnerable code,
and have demonstrated promising effectiveness in guaranteeing
the security of open-source ecosystems. Unfortunately, they often
neglect the important fact that, similar to general code, the patched
code is constantly evolving as well. Recent studies have revealed
that the performance of existing works has degraded significantly
in real scenarios where the patched code evolves [55, 56].

In this study, we take the first look to systematically investigate
the phenomenon of security patch evolution in open-source projects. In
particular, we are interested in knowing how often security patches
evolve, what are the characteristics, and the impact of patch evolu-
tion on downstream 1-day vulnerability (publicly disclosed vulnera-
bilities) analysis tools [7, 8, 16, 25, 40, 48–50, 55] More importantly,
we further investigate whether the characteristics of security patch
evolution can be exploited to detect new vulnerabilities. To achieve
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the above goals, we first introduce the concepts and definitions
related to patch evolution (see Section 3.2) and perform extensive
experiments on a large dataset of security patches collected from
open-source projects. In particular, our dataset consists of 1,046
distinct CVEs with 2,633 patches that are collected from 10 large-
scale open-source projects (e.g., linux, FFmpeg and openjpeg). Based
on such a dataset, we investigate the problem of security patch
evolution from the following perspectives.

Security Patch Evolution Frequency. We first investigate how
often security patches evolve, and whether it is pervasive among
popular OSS projects. To achieve such a goal, we track the evolution
of security patches via mining the corresponding repository. Our
study reveals that patch evolution is pervasive, occurring in over
81.1% of the collected CVEs. More importantly, quite a few CVE
patches (29.6%) undergo the first evolution quickly, particularly
within the first 90 days. Such cases would cause a significant po-
tential impact on the security insurance in the whole ecosystem
since downstream software often backports patches based on the
original versions, as provided in the patch links from NVD, while
ignoring the subsequent evolved versions. Therefore, we are further
motivated to investigate and understand such potential impact.

Security Patch Evolution Characteristics. We then explore
the characteristics of security patch evolution, in particular, with
respect to the changes of the patching code authorship as well
as the code change patterns. Prior research [3] has revealed that
the more developers contributing to the same piece of code, the
higher risk of the code to be buggy. Such observation motivates us
to examine changes in authorship during the patch evolution. Our
study shows that the authorship of 93.2% of the CVE patches has
changed, suggesting possible risks to induce new security issues
during the evolution since the non-original developers might be
unaware of the intention of the patched code. In terms of the code
characteristics, our study reveals that condition and relational code
structures have been modified the most during patch evolution,
mainly to refine the original constraints of the patch. Some projects
(e.g., linux) also often change lock api and system api to enhance
the correctness of the system.

Security Patch Evolution Impact. Most 1-day vulnerability
tools overlook security patch evolution, leading to compromised
effectiveness [55, 56]. For instance, FIBER picks only the initial
version of the patched function to generate patch signatures [55],
while its accuracy dropped significantly compared to what was re-
ported in the original paper due to patch evolution as indicated by a
recent study [56]. Motivated by this, we further investigate to what
extent security patch evolution impacts existing 1-day vulnerabil-
ity analysis tools. Our study reveals that as the patch evolves, the
false positive rates of function-level vulnerability detection tools
SAFE [25] and jTrans [40] notably increase, rising from 0.15 to 0.28
and 0.09 to 0.19 respectively. Similar trends have also been observed
for patch presence test tools, such as PMatch [16] and BinXray [50].
Such results reveal that existing 1-day vulnerability analysis tools
are significantly limited in handling patch evolutions.

Our empirical study reveals a concerning trend: during software
evolution, developers often inadvertently alter the patches’ logic.
Such modifications, while being well-intentioned, might inadver-
tently induce new security issues. To validate this hypothesis, we
further perform a case study to demonstrate that modifications to

the patch can indeed induce new vulnerabilities. These findings
underscore the importance of carefully monitoring and scrutinizing
patch evolution, ensuring that efforts in modifying patches do not
compromise their original security objectives or induce new issues.

To summarize, we make the following major contributions:
• Perspective. We are the first to systematically investigate the

phenomenon of security patch evolution in OSS projects via
performing extensive empirical evaluations.

• Empirical Evaluation. Our extensive empirical study investi-
gates important aspects, including how often security patches
evolve, what are the evolution code patterns, and the impact
of patch evolution on downstream 1-day vulnerability analysis
tools. Our study on a large-scale dataset yields interesting yet
significant findings.

• Artifacts.We open-sourced our collected patch dataset (i.e., 1,046
distinct CVEs together with 2,633 patches) as well as the corre-
sponding code evolutions. All the artifacts can be accessed at:

https://github.com/CGCL-codes/PatchEvolution

2 Background and Motivation
Security patches are critical updates designed to fix vulnerabilities
in software systems, thereby guaranteeing their security against
potential cyber threats. Numerous 1-day vulnerability detection
tools predominantly depend on security patches to discern vulner-
abilities in the target software [23, 24, 50, 52], which contain the
two main categories. First, function-level vulnerability detection
tools [8, 12, 25, 34, 40, 58] work on the principle that vulnerabil-
ities often have common characteristics or patterns that can be
detected through code semantic comparison or pattern recogni-
tion. Specifically, if a function bears resemblance to a vulnerable
function (i.e., the pre-patch version of the function) in the target
software, such a function can be perceived as potentially vulner-
able. Second, patch presence test tools [7, 13, 16, 50, 56] aim to
identify unpatched vulnerabilities. If the target software lacks the
patch addressing a specific CVE, it could be potentially exposed to
security risks, thereby providing an opportunity for attackers.

Although existing tools have achieved promising results in de-
tecting 1-day vulnerabilities, it has been noted that software/patch
evolution can threaten the performance of these tools [56]. Moti-
vated by this, we take the first look to systematically investigate the
phenomenon of security patch evolution in open-source projects.

Patch Evolution. Open-source projects, including their security
patches, evolve over time [42, 57]. To demonstrate how security
patches are constantly modified after their initial release, we use
a real example in Figure 1 for demonstration. It shows the patch
(commit=3ed82f) for CVE-2015-3138 [4], a vulnerability in tcp-
dump [38], which allows users to capture or filter TCP/IP packets
that pass through the network interface. The attacker can cause tcp-
dump denial of service by a carefully crafted network packet. How-
ever, we note that this patch was modified twice (commit=9f1e5e
and 84ef17) by another author after its release. Finally, the patch
snippets were deleted with a new sanitizer checker added (com-
mit=0a5fae) by the original author.

In this example, we define the modifications made to the original
CVE patch throughout the software evolution process as patch
evolution. Throughout the process of patch evolution, two main

https://github.com/CGCL-codes/PatchEvolution
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Project: tcpdump

CVE-2015-3138
print-wb.c in tcpdump before 4.7.4 allows remote attackers to cause a
denial of service (segmentation fault and process crash).

CVSS score=7.5

Original. Commit = 3ed82f. Author=Denis Ovsienko. Time=2015/03

204  - if (!ND_TTEST2(cp, len()) {
205 + if (ND_TTEST2(cp, len()) {

Evolution 1. Commit = 9f1e5e. Author = Francois-Xavier Le Bail. Time=2017/12

206 - if (ND_TTEST2(cp, len()) {
207 +    if (ND_TTEST2(*cp, len()) {

Evolution 2. Commit = 84ef17. Author = Francois-Xavier Le Bail. Time=2017/12

206 - if (ND_TTEST2(*cp, len()) {
207 + if (ND_TTEST_LEN(cp, len()) {

Evolution 3. Commit = 0a5fae. Author = Denis Ovsienko. Time=2020/09

202 +   if (len < sizeof(*io) * nid)
203 +           return (-1);
// … 
207 - if (ND_TTEST_LEN(cp, len()) {

patch0={205}

patch1={207}

patch2={207}

patch3={∅}control 
dominant

Figure 1: The evolution of security patch of CVE-2015-3138.

changes may occur: (1) direct changes: the syntax of the patch
itself is modified (e.g., the line of the original patch changes in
commit 9f1e5e, Figure 1. (2) indirect changes: the context related to
the patch (i.e., the code that exhibits data/control flow relationships)
is modified. For example, an if statement that dominates the patch
code is added in commit 0a5fae, Figure 1.

Such patch evolution can cause severe potential side effects: First,
prior research [3] has revealed that the more developers contribute
to the same piece of code, the higher risk of the code containing
defects. Similarly, subsequent authors modifying a patch might be
unaware that the associated code aims to fix a vulnerability issue,
let alone the intention of the repair logic. This lack of awareness
could unintentionally disrupt the patch’s fix logic, thus potentially
inducing new vulnerabilities. Second, downstream softwares often
backport patches to other branches based on the patches’ original
versions, as provided in the patch URL links from the NVD. How-
ever, our research reveals that 29.6% of the patches are altered by
other developers within 90 days of their release (see Section 5.1),
possibly to enhance the original patch’s fix logic. If the fix logic
of the original patch is flawed, it could jeopardize the security of
downstream software that ported the original patches. Therefore,
it motivates us to systematically investigate the impact of patch
evolution on downstream tasks. In this study, we mainly investigate
two types of 1-day vulnerability analysis tools based on security
patches, which are introduced as follows.

Function-Level Vulnerability Detection. Vulnerability detec-
tion is considered one of the main applications of function similarity
comparing approaches [24, 40]. Specifically, given a patch-related
function in the target software, we consider it to be affected by a vul-
nerability if it is more similar to post-patch reference and less similar
to pre-patch reference [8, 40], the idea of which is inspired by an ex-
isting work [7]. In recent years, numerous learning-based function
similarity methods have been proposed. For instance, jTrans [40]
employs a Transformer-based approach to learn binary code repre-
sentations by integrating control flow information into language
models. This is accomplished via a jump-aware representation of
the analyzed binaries and a specially designed pre-training task.

Popular OSS projects

Vulnerability Database

Data Construction

Security Patches

Commit History
Patch Evolution Tracker

• direct changes
• indirect changes
• irrelevant
• removal

RQ1: Frequency of 
Patch Evolution

1-day Vulnerability
Detection Tools

Func-Level

• jTrans

• SAFE

Patch-Level

• BinXray

• PMatch

RQ2: Characteristics 
of Patch Evolution

RQ3: Impact of 
Patch Evolution

1. Distribution
• direct / indirect/ 

irrelevant / removal

2. Frequency
• Time interval Human-involved

1. Authorship change
2. Evolution causes
• AST features
• Manual analyze

Figure 2: Overview of this study

SAFE [25] utilizes an RNN architecture with attention mechanisms
to generate a representation of the analyzed function using assem-
bly instructions as input.

Patch Presence Test. The Patch Presence Test is designed to
deduce whether a binary includes the patch for a specific vulnera-
bility [7, 13, 16, 50, 56]. BinXray [50] generates patch signatures by
comparing pre-patch/post-patch functions, using basic block match-
ing. Such patch signatures are then utilized to match target func-
tions, in order to ascertain if they have been patched. PMatch [16] is
a learning-based approach for detecting patches in binary functions.
It works by extracting code snippets affected by patches, creating
semantic representations of binary code using unsupervised sen-
tence embedding, and subsequently matching these snippets with
target blocks derived from function diffing.

The aforementioned tools show promising results but often over-
look the ongoing evolution of security patches. Recent studies reveal
significant performance drops when patched code evolves [55, 56].
This prompts our systematic study on the effects of security patch
evolution on these tools.

3 Study Design
Figure 2 provides an overview of the empirical investigations per-
formed in this study. We begin our study by selecting 10 prominent
open-source projects (e.g., linux), each representing different func-
tionalities (see Section 3.1). To gather the security patches for these
vulnerabilities, we query a public dataset known as PatchDB [43].
Additionally, we extract all the code commits of the target projects
from GitHub to further support our detailed patch evolution track-
ing. Further, we locate the security patch in each evolved patch-
related function by tracing the modifications from the original patch
throughout the whole software evolution process.

Our research offers the first comprehensive study on security
patch evolution in OSS projects. We focus on understanding the
frequency and characteristics of security patch evolution.

3.1 Dataset Collection
We chose projects from PatchDB [43] to investigate patch evolution.
PatchDB is a widely recognized security patch dataset which con-
tains over 12K CVE patches. We select those projects that contain
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Table 1: Dataset statistics of the CVEs used in this study

Projects #Stars #Forks #Commits #CVEs #Patches
FFmpeg 37.4K 11.3K 110.6K 154 219
ImageMagick 9.6K 1.2K 21.3K 34 47
libxml2 469 332 6.0K 19 46
linux 154.8K 49.0K 1.2M 555 1,490
openjpeg 881 433 3.0K 10 20
openssl 22.3K 9K 33.0K 32 59
php-src 35.7K 7K 132.6K 64 278
qemu 8.1K 4.8K 105.6K 70 246
radare2 18.4K 2.9K 30.1K 29 77
tcpdump 2.3K 794 7.2K 79 151
total 289.8K 88.0K 1.6M 1,046 2,633

the most number of CVE patches in PatchDB while meeting the fol-
lowing criteria: (1) ease of compilation: for our subsequent empirical
studies, we need to compile different versions of the projects before
and after applying the target patches, as well as other evolution
versions, to assess the performance of existing vulnerability detec-
tion tools. Therefore, the projects should be easily compilable. (2)
complete evolution history: we need to track patch evolutions based
on OSS commit histories, so the selected projects must be continu-
ously and actively maintained through version control systems like
Git. (3) frequent updates: projects that are not frequently updated
might contain limited evolutions to each CVE patch, making them
less likely the ideal candidates for investigating the problem of
patch evolution. Eventually, we selected ten C/C++ projects, includ-
ing Linux [31], FFmpeg [30], OpenSSL [32], and other large-scale
projects. These projects cover a wide range of categories and func-
tionalities. Moreover, we also found that these projects have already
been extensively investigated by existing studies [36, 43, 50], mak-
ing them representative choices. On the other hand, we excluded
projects that did not meet our criteria. For example, despite the high
star count of some projects (e.g., PhantomJS [28]), they have been
discontinued and are no longer actively maintained, so they were
excluded from our study. By selecting these projects, we ensure that
a broader array of vulnerability types is included in our research.
Table 1 summarizes the dataset we collected.

3.2 Definitions
To ease the understanding of tracking patch evolutions, we intro-
duce the following concepts and definitions.

Security Patch. Following an existing study [53], a security
patch refers to modifications in the code that replace vulnerable
logic with safe code. Typically, a patch usually consists of one or
several hunks. A patch hunk is a basic unit which consists of context
statements, deleted statements, and/or added statements [47]. In
particular, context statements denote those surrounding statements
of deleted and added statements with control and data dependen-
cies [53]. Typically, the involved operations made to each hunk can
be deleted, added, and changed depending on the nature of modifi-
cations. A change type hunk typically involves modified statements,
incorporating both deletion and addition operations.

Patch-related Functions. A patch-related function refers to the
function where a patch hunk resides. Since a security patch might
contain multiple hunks, it also often contains multiple patch-related
functions, and we denote them as a set F = {𝑓1, 𝑓2, ..., 𝑓𝑚}. In this
study, we choose functions as the carrier for tracking the evolution

of patches since functions represent cohesive units of code that
encapsulates specific behaviors, making it easier to observe and
understand the impact of patch changes (e.g., identifying direct or
indirect changes via performing control and data flow analysis).

Patch Evolution. Suppose 𝑝𝑎𝑡𝑐ℎ0 denotes the original security
patch, and we can recognize the patch-related functions F based
on the modifications it makes. We then track the patch evolution by
tracing the evolution of those patch-related functions via mining
the complete version histories of the project. In particular, suppose
C = {𝑐1, 𝑐2, ..., 𝑐𝑛} denotes those commits made after the original
patch to any function in F chronologically. By investigating the
modifications made in each commit 𝑐𝑖 , we can track the evolutions
of 𝑝𝑎𝑡𝑐ℎ0 and obtain the corresponding evolved patch versions
{𝑝𝑎𝑡𝑐ℎ1, . . . , 𝑝𝑎𝑡𝑐ℎ𝑖 , . . . , 𝑝𝑎𝑡𝑐ℎ𝑛}. Here, 𝑝𝑎𝑡𝑐ℎ𝑖 represents the i-𝑡ℎ
version of the original patch, which records the location and mod-
ifications of the evolved patch. Specifically, via investigating the
modifications made by each commit 𝑐𝑖 (i.e., whether it modifies
the added/deleted statements directly or the context statements
as defined in Security Patch), we can recognize four main types
of changes to the patch: direct changes, indirect changes, irrelevant
changes and removal. We provide a detailed explanation of the patch
tracking process in Section 3.3.

3.3 Patch Evolution Tracker
Precisely tracking the evolution of patches is the key to facilitating
such a large-scale study. Specifically, to track the evolution of se-
curity patches, we mine the repository’s commit histories to trace
the changes of the corresponding patch-related functions.

Identifying patch-related functions. We first identify patch-
related functions as defined in Section 3.2. Specifically, given a
security patch, we first identify the patch-related files by the header
lines starting with --- and +++ in the patch diff. To gather all the
commits that change the patch-related files, we use the git log
command with the option --follow for patch-related files. To iden-
tify the patch-related functions, we extract patch hunks of the patch
and identify the changed locations. We then identify the bound-
aries of each function on patch-related files via clang parser [39]
(i.e., the starting and ending statements of the functions). Finally,
the patch-related functions F = {𝑓1, 𝑓2, ..., 𝑓𝑚} can be identified via
mapping these modified line numbers to the boundaries of each
function. We then identify commits C = {𝑐1, 𝑐2, ..., 𝑐𝑛} that mod-
ify any of the patch-related functions based on the modifications
of each commit. For each security patch in Dataset 1, we iterate
through all subsequent commits (from commit 𝑐1 to 𝑐𝑛) that modify
patch-related functions to identify the evolved patch.

Patch Evolution Tracker. We detail the process to track patch
evolution as follows. We start our tracking based on 𝑝𝑎𝑡𝑐ℎ0, espe-
cially those statements added by 𝑝𝑎𝑡𝑐ℎ0. We focus on the addition
statements as they encapsulate the crux of the bug-fixing logic,
such as adding a sanitizer checker to check the runtime state of
the program. Besides, deletion lines are not visible in subsequent
versions, so they cannot be tracked in subsequent commits. We
then aim to track the evolution and obtain 𝑝𝑎𝑡𝑐ℎ𝑖 based on 𝑐𝑖 ’s mod-
ification to 𝑝𝑎𝑡𝑐ℎ𝑖−1 and identify the location of evolved patches
for each commit. Eventually, we can obtain a sequence of patch
versions, including 𝑝𝑎𝑡𝑐ℎ1, …, 𝑝𝑎𝑡𝑐ℎ𝑖 , … , 𝑝𝑎𝑡𝑐ℎ𝑛 chronologically,
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where 𝑝𝑎𝑡𝑐ℎ0 denotes the original patch, and 𝑝𝑎𝑡𝑐ℎ𝑖 denotes the
i𝑡ℎ version by incorporating commit 𝑐𝑖 . Specifically, there are four
main types of changes made by 𝑐𝑖 :

(1) direct changes: denote those modifications (including state-
ment changes and deletions) that are made to the statements of
𝑝𝑎𝑡𝑐ℎ𝑖−1 directly. To detect change statements, we take line 206
and 207 in Evolution 1, Figure 1 as an example. Line 207 exhibits a
subtle modification to line 206, while the diff command interprets
this as a line deletion (for the old line, line 206) and a line addition
(for the new line, line 207). This example motivates us to propose a
heuristic-based approach to identifying change statements. Specifi-
cally, we consider adjacent deletion and addition lines with similar
semantics to represent a change statement. More specifically, when
the similarity between an adjacent pair of deletion and addition
lines exceeds a threshold, denoted as𝑇𝐿𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 , we treat these
two lines as a single change statement. Otherwise, we consider it
a line deletion if the similarity is below the threshold or the state-
ments are directly removed. In this study, we set 𝑇𝐿𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 to
0.7 following an exist study [7]. Then, we will update the 𝑝𝑎𝑡𝑐ℎ𝑖
based on its modifications on 𝑝𝑎𝑡𝑐ℎ𝑖−1 and use it for subsequent
tracking iterations.

(2) indirect changes: denote those modifications made on con-
text statements of 𝑝𝑎𝑡𝑐ℎ𝑖−1. Specifically, the modified lines in the
commit can exhibit data or control dependencies with 𝑝𝑎𝑡𝑐ℎ𝑖−1
(e.g., the if statement on line 202 in commit 0a5fae has a control
dependency with line 207 in Figure 1). In particular, the depen-
dency analysis is performed based on Joern [51]. We include indi-
rect changes in our analysis since many studies have pointed out
that the root cause of a defect might reside in those locations that
possess control/data dependencies with the patched code [2, 15, 46],
and thus tracking the evolution of such code is essential.

(3) irrelevant: denote those modifications made on patch-related
functions, but have no direct or indirect relation to 𝑝𝑎𝑡𝑐ℎ𝑖−1. As
software evolves, developers will add new features or refactor ex-
isting code, improving its structure and readability and enhancing
maintainability. Although such irrelevant changes do not modify
the security patch and its context, we also include them in our study
to understand how frequently patch-related functions evolve.

(4) removal: The commit deletes the patch-related functions
or the files containing them. Note that the renaming of the patch-
related file is not a case of file deletion, since file renaming can be
documented by git (e.g., --- a.c; +++ b.c in the commit header
records that the file renames from a.c to b.c).

We iterate through all commits (from commit 𝑐1 to 𝑐𝑛) that mod-
ify the patch-related functions and terminate the process if 𝑝𝑎𝑡𝑐ℎ𝑖
contains no statements (e.g., the 𝑝𝑎𝑡𝑐ℎ3 is set to 𝜙 in commit 0a5fae,
Figure 1) or is removed. In this study, we denote the commit that
applies direct changes to 𝑝𝑎𝑡𝑐ℎ𝑖 as patch-evolved commit and the
corresponding CVE as patch-evolved CVE. During the iterations,
we only update 𝑝𝑎𝑡𝑐ℎ𝑖 from direct changes. This ensures that the
code snippet modified by direct changes is indeed derived from the
original patch. Instead, we do not update indirect changes to 𝑝𝑎𝑡𝑐ℎ𝑖
since the tracked statements can induce patch irrelevant ones af-
ter several iterations of tracking. Otherwise, too many irrelevant
statements might be included in the patch, thus preventing us from
understanding the evolution of patches precisely.

Table 2: Patch Evolution Statistics. #sec/#evo/#total denotes
the number of patch-evolved commits addressing security
issues CVEs v.s. patch-evolved CVEs v.s. total CVE numbers.
The direct, indirect, irrelevant and removed respectively de-
note the average number of times corresponding changes
occur for each evolved CVE.
Project #sec/#evo/#total direct indirect irrelevant removed
FFmpeg 29/128/154 1.2 ± 0.9 0.8 ± 1.7 6.8 ± 17.5 0.1 ± 0.3
ImageMag. 5/32/34 1.9 ± 1.6 0.8 ± 0.9 20.0 ± 25.5 0.1 ± 0.3
libxml2 4/18/19 1.3 ± 0.6 0.5 ± 0.6 5.5 ± 6.8 0.1 ± 0.2
linux 287/434/555 1.3 ± 1.1 0.4 ± 0.9 7.5 ± 19.6 0.2 ± 0.4
openjpeg 1/10/10 1.2 ± 0.4 0.8 ± 0.6 2.1 ± 1.6 0.0 ± 0.0
openssl 7/29/32 2.1 ± 1.6 1.3 ± 1.7 12.9 ± 28.1 0.5 ± 0.6
php-src 28/47/64 1.6 ± 1.7 0.7 ± 1.2 8.3 ± 18.8 0.3 ± 0.5
qemu 25/53/70 0.9 ± 0.5 0.3 ± 0.5 6.9 ± 20.1 0.2 ± 0.5
radare2 13/19/29 1.0 ± 1.1 0.5 ± 0.9 7.9 ± 14.9 0.3 ± 0.5
tcpdump 5/78/79 3.8 ± 3.0 1.7 ± 2.0 10.7 ± 8.8 0.1 ± 0.2
Summary 404/848/1046 1.8 ± 1.6 0.7 ± 1.3 10.1 ± 19.0 0.2 ± 0.4

3.4 ResearchQuestion
This study aims to answer the following research questions.

RQ1. Evolution Frequency:How often do security patches evolve?
In this RQ, we intend to investigate the frequency of patch evolution,
including the distribution for the four modifications as well as the
time interval during patch evolution.

RQ2. Evolution Characteristics: What are the characteristics
of security patch evolution? In this RQ, we intend to investigate
the changes of the patching code authorship as well as the change
patterns during patch evolution.

RQ3. Evolution Impact: What are the impacts of security patch
evolution? In this RQ, we intend to investigate how patch evolution
affects the existing 1-day vulnerability detection tools, including
function-level vulnerability detection and patch presence test tools.

4 RQ1: Evolution Frequency
In this section, we delve into the analysis of patch evolution fre-
quency from various perspectives. Particularly, we examine the dis-
tribution of four types of changes (direct changes, indirect changes,
irrelevant, and removal) occurring during the patch evolution pro-
cess, along with the time intervals between patch evolutions.

4.1 Overall Patch Evolution Statistics.
Investigating the frequency of patch evolution can provide a holistic
view of this phenomenon. In this section, we first examine the oc-
currence rates of four types of modifications during patch evolution
and provide a detailed analysis of their distributions.

The statistical results are presented in Table 2, the summary row
provides an overall representation of the patch evolution across
all projects. Overall, 81.1% (848/1046) of CVEs have undergone
patch evolution (i.e., the patch of the CVE has been modified by
at least one direct change), which indicates that the evolution of
patches is a common phenomenon. For #sec, we traversed the patch-
evolved commits for each CVE and examined whether the commit
messages mentioned any security issues. First, we identify those
commits that involved keywords such as ‘Fix’, ‘Bug’, and ‘CVE’.
Subsequently, we manually verified that these commits indeed
addressed security concerns. Among them, 38.62% (404/1046) of the
CVEs have subsequent commits that address security issues. This
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means that 47.64% (404/848) of the evolving CVEs involve security-
related commits. Though ‘the patch-evolved commits are security-
related’ does not necessarily imply that subsequent developers
introduce new security vulnerability by disrupting the original
patch’s fix logic, it would be helpful to empirically understand how
often this occurs.

Then, we investigate the average frequency for the four modifica-
tion types on patches among patch-evolved CVEs. On average, there
are 1.8 direct changes and 0.7 indirect changes per patch-evolved
CVE, with a standard deviation of 1.6 and 1.3 respectively. This sug-
gests that direct and indirect modifications to patched statements
are common during patch evolution. Irrelevant changes are most
frequent with an average of 10.1, indicating that there are also a
large number of modifications to the patch-related functions while
do not impact the patch. Finally, the removal of the function or file
containing the patch is the minority, occurring 0.2 times on average.
Examining individual projects, tcpdump stands out with a notably
high average of direct changes (3.8) compared to other projects.
This possibly suggests a higher degree of refinement in the patches.
openssl also exhibits a high average of indirect changes (1.3), im-
plying a more complex data and control flow modification during
patch evolution. Lastly, the openjpeg project has no instances of
patch removal, indicating a stable patch inclusion in the project.

Finding 1: Patch evolution is a prevalent phenomenon, occurring in
over 81.1% of CVEs. Among the modifications during patch evolution,
irrelevant changes are the most common, with an average of 10.1
irrelevant changes per patch-evolved CVE.

4.2 Patch Modification Distribution
We investigate the frequency distribution of the various modifica-
tions on patch-evolved CVEs. We aim to discern patterns and trends
in these change types as the number of modification increases.
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Figure 3: Patch Modification Distribution

Figure 3a provides the distribution of three types of modifica-
tions: direct, indirect, and irrelevant during patch evolution across
different numbers of occurrences. There are 458 CVEs with only
one direct change. The frequency of direct changes decreases with
the increase of occurrences, suggesting that most patches tend to
experience a single direct change. Similarly, indirect changes are
most frequent in a single occurrence with 230 CVEs. The frequency
of indirect changes decreases with the increase in occurrences, im-
plying that indirect changes, like direct changes, usually happen
once during patch evolution. The frequency of irrelevant changes
increases markedly for patches with more than five occurrences
(352 CVEs). This suggests the complexity of software evolution

and the potential for a wide range of changes to occur during the
lifecycle of a patch, not all of which directly alter the patch itself.

Figure 3b provides the data on file and function removal in patch-
evolved CVEs across various projects. Overall, 12.9% of the files and
22.1% of the functions related to CVE patches are removed. Examin-
ing individual projects, openssl shows the highest file removal ratio
on file (48.3%) and function (37.9%), indicating significant codebase
changes during patch evolution.

Finding 2: Most patches typically go through just one direct or indi-
rect alteration, with irrelevant changes cropping up more than five
times. Moreover, 12.9% of patch-related files and 22.1% of functions
get removed, suggesting significant codebase evolution.

4.3 Patch Evolution Timeline
In this section, we investigate the timeline for patch evolution. This
understanding is critical because it sheds light on the lifecycle of
security patches, and the process of patch management practices.

To accomplish this, we utilized a method of tracking the patch
evolution over specific intervals. The data was classified into two cat-
egories: (1) the time interval for the initial patch evolution (i.e., the
interval for the first patch-evolved commit), (2) the average evolu-
tion time (i.e., the average time between the original patch and the
last patch-evolved commit). The first category provides us insights
into how quickly patches are modified after their initial release.
The second category provides a more holistic view of the patch
evolution process, taking into account all patch-evolved commits
from the first to the last.
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Figure 4: Distribution of Patch Evolution Timescales

Figure 4a details the distribution of the time intervals for the
first evolution of CVE patches. As an overarching trend, there is a
distinct decrease in the CVE numbers as the interval expands. A
total of 44 CVE patches were altered on the day of their release.
This could be caused by the developers recognizing that the orig-
inal patch was insufficient to fix the vulnerability, leading them
to further refine the patch’s logic. The (0,90] day range boasts the
highest concentration with 207 CVEs, hence 29.6% (44+207/848)
patches are altered within 90 days. This implies that a large portion
of these patches undergo their first evolution relatively quickly
after their introduction. However, in practice, downstream software
often backports patches based on the original versions, as provided
in the patch URL links from NVD. If the fix logic of the original
patch is flawed, it could compromise the security of the downstream
software. It is noteworthy to highlight the anomaly in the >720
day interval, whichcontains 247 CVEs. This interval, representing
a much longer timescale, is the second most populated interval.
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This could point to a subset of patches that are inherently stable,
requiring their first evolution only after an extended period of time.

Figure 4b portrays the average evolution time of the CVE patches.
Similar to Figure 4a, this figure also exhibits a general decline in
CVE numbers as the interval lengthens. The most active range here
is also the (0,90] day range with 161 CVE patches. This infers that
most patches evolve frequently within less than 90 days.

Finding 3: Quite a few CVE patches (29.6%) undergo the first evolu-
tion quickly, particularly within the first 90 days. However, a sizable
group only evolves for the first time after exceeding 720 days. The
average evolution time mostly aligns with this trend.

5 RQ2: Evolution Characteristics
5.1 Authorship Changes in Patch Evolution
Recent studies [18, 22, 29] underscore the significant influence of
“human” elements, including aspects such as ownership, experience,
organizational structure on software quality. Prior research [3] also
suggests that a larger number of developers contributing to a single
file could result in a higher possibility to induce defects. Such obser-
vation motivates us to examine the changes in the patched code’s
authorship during the evolution. For instance, after the release
of a security patch, subsequent contributors to the patch-related
functions may not realize that parts of the code actually fixed a
security vulnerability. Therefore, they may inadvertently alter the
data and control flows associated with the patch, or even remove
the original patched code. This disruption to the patch’s fix logic
could potentially introduce potential security threats.

To delve deeper into how authorship changes during patch
evolution, we selected patch-evolved CVEs and conducted a two-
dimensional analysis: (1) We examined whether the author of a
patch-evolved commit is the same as the original patch author. If
they are not the same, we considered this as a change in patch
authorship. For example, the author of commit 9f1e5e in Figure 1
has been changed compared to the author of the original patch.
Therefore, we calculated the proportion of CVEs in each project that
experienced a change in patch authorship. (2) Further, we counted
the unique number of authors for each patch-evolved CVE to un-
derstand how many unique developers have contributed to a single
patch (including the author of the original patch and patch-evolved
commits). For example, among the four commits in Figure 1, there
are two unique developers.
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Figure 5: Authorship Changes during Patch Evolution

Figure 5 shows the statistical result of how frequently security
patches’ authorship changes. The results show that there is a sig-
nificantly high proportion of patches that undergo author changes

during their evolution, in which 93.2% (=790/848) CVEs have un-
dergone the changes in patch authorship. This suggests that a large
number of patches are typically worked on by multiple develop-
ers. On the other hand, projects like FFmpeg (78.1%=100/128) and
openjpeg (60.0%=6/10) have a relatively low proportion of author
changes. This could suggest a higher degree of exclusive ownership
over the patches in these projects. The boxplot as shown in Figure 5b
shows the distribution of unique authors during the patch evolu-
tion across projects. An initial glance at the summary data which
encapsulates the overall scenario reveals a central tendency around
2. This implies that on average, two authors are predominantly
involved to contribute a patch across all projects.

Finding 4: Most of the CVE patches (i.e., 93.2%) are modified by
other developers after its initial release. On average, two authors
predominantly contribute to a single patch across all projects.

5.2 Code Feature Changes in Patch Evolution
To gain a deeper understanding of how patches evolve, we con-
ducted a quantitative analysis of the changes in code features during
the patch evolution process. In this section, our focus is on direct
and indirect changes of the patch as they effectively reflect the
transformation process of both the patch itself and its context.

Table 3:The code features and the corresponding (sub-)tokens
Features (sub-) tokens Features (sub-) tokens
condition if, switch bitwise &, |, ˆ et al.
loop for, while memory API alloc, free, mem et al.
jump return, goto et al. string API string, str
arithmetic +, -, *, / et al. lock API lock, mutex, spin
relational <, >, == et al. system API init, register, map et al.
logical &&, ||, ! et al. other func other function calls

Recent researches suggest that source code vulnerabilities are
highly correlated with certain syntax characteristics [44]. For ex-
ample, the usage of pointers and arrays in the C/C++ language is
likely to be more vulnerable since these operations often lead to
out-of-bounds (OOB) access or null pointer dereference [19]. Thus,
we extract the code features at the level of Abstract Syntax Tree
(AST) following an existing patch identification work, named Graph-
SPD [41]. GraphSPD was originally proposed to identify whether a
given commit is a security patch and propose several patch-related
features that are highly related. We adopt the proposed code fea-
tures from GraphSPD to quantify how patches evolve. Specifically,
we begin by segmenting C/C++ code snippets into code tokens
using the clang tool [39]. Then, the AST features and the corre-
sponding tokens and sub-tokens are matched based on Table 3.
For instance, in commit 0a5fae, Figure 1, Lines 202-203 contribute
one time on condition, relational, arithmetic, and jump for indirect
changes, respectively; Line 205 contributes one and two times on
the condition and other func for direct changes.

Table 4 shows the statistical results on our dataset, which pro-
vides a detailed comparison of the changes in various code features
during the patch evolution across projects. In particular, each cell in
the table is denoted as a/b, where a denotes the number of direct
changes and b denotes the number of indirect changes. The sum-
mary row displays the total count of the two changes. The relational
feature contains the highest total changes with 1,126 direct changes
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Table 4: The change of code features during patch evolution. The cell consists of a/b , where a denotes the number of changes to
the code feature in direct changes throughout patch evolution, and b denotes such a number in the indirect changes.

Projects condition loop jump arithmetic relational bitwise logical other func memory api string api lock api system api
FFmpeg 76/107 7/16 34/0 70/73 164/213 10/18 58/81 33/44 3/11 2/13 0/0 13/45
ImageMagick 18/10 0/1 2/0 6/4 13/13 1/6 1/0 18/9 2/0 2/3 0/0 0/0
libxml2 10/11 0/0 6/0 8/7 8/11 1/0 4/2 10/0 0/0 0/0 0/0 1/0
linux 305/259 12/8 205/2 92/65 281/171 73/39 113/125 465/217 79/12 4/3 132/16 153/51
openjpeg 1/14 0/2 1/0 12/51 20/23 12/12 10/7 2/2 3/0 0/0 0/0 2/0
openssl 30/141 0/1 9/0 0/3 58/210 0/7 6/29 11/40 22/10 0/0 0/0 9/18
php-src 260/129 10/3 154/24 75/36 447/156 5/3 45/38 101/99 13/3 25/30 0/0 10/13
qemu 47/40 4/1 24/0 19/13 73/33 5/13 14/11 58/20 8/6 4/6 2/0 14/6
radare2 12/22 3/4 9/0 10/9 29/17 0/4 8/3 7/8 6/1 5/7 0/0 3/0
tcpdump 28/95 2/15 46/0 146/179 33/112 8/19 5/17 177/200 1/0 32/0 0/0 15/0
Summary 787/828 38/51 490/26 438/440 1,126/959 115/121 264/313 882/639 137/43 74/62 134/16 220/133

Table 5: Patch evolution patterns
Types P Patterns Description Ratio

Type1
(54.70%)

P1 Rename identifiers Change the name of a variable, function, or other element inside the patch. 14.53%
P2 Add/remove cast expression Add or remove the cast expression for variables. 4.27%
P3 Rewrite loop patterns Convert a for loop statement to a while loop statement, or vice versa. 1.71%
P4 Adjust code format Modify the formatting of code, such as adjusting indentation or Line-Break. 5.98%
P5 Extract and reuse code Duplicated code is eliminated by extracting it into a distinct module for reuse. 4.27%
P6 Define integer macros Replace values used multiple times in code with a macro. 1.71%
P7 Modify parameters of callees Change types or number of parameters for callees inside the patch. 19.66%
P8 Array indexing to pointer dereferencing Change from array indexing to pointer access. E.g., change from p[index] to *(p+index). 2.56%

Type2
(45.30%)

P9 Adjust memory allocation Modify the allocated memory size in the memory allocation function. 1.71%
P10 Change patch context Add or remove statements that have control or data flow relationship with the patch. 13.68%
P11 Modify conditions inside patch Change the condition expressions inside the patch to refine its logic 14.53%
P12 Changes loop termination condition Modify the loop termination condition to alter the number of iterations. 0.85%
P13 Delete all/part of patch code Part or all of the patch-related code is removed. 14.53%

and 959 indirect changes. This indicates that relational is the most
frequently modified AST feature during patch evolution across all
projects. The condition feature also has a high number of modifica-
tions, with 787 direct changes and 828 indirect changes. We further
analyzed the underlying causes. condition and relational modifi-
cations are often linked to control flow changes. Since software
patches frequently involve bug fixes or functionality improvements,
they often require changes to existing conditions or the addition of
a new sanitizer checker to alter the control flow. These changes are
common when fixing bugs or refining fix logic as they often pertain
to adjusting how different variables or states interact with each
other. In contrast, AST features like bitwise (115/121) and string api
(74/62) have significantly fewer changes. This suggests that these
features are less likely to be modified during patch evolution, indi-
cating their relative stability.

In terms of each individual project, linux patches contain rela-
tively more api changes, such as lock api and system api, probably
due to the importance of these areas in ensuring that the system
operates correctly, efficiently and safely.

Finding 5: Condition and relational features have been modi-
fied the most during patch evolution, mainly to refine the original
constraints of the patch. Some projects (e.g., linux) also change
lock api and system api to enhance the correctness of system.

5.3 Patch Evolution Patterns
During the patch evolution, analyzing the changes in code fea-
tures allows us to quantitatively investigate how developers modify
patches. To further understand the patterns of patch evolution qual-
itatively, we randomly selected 100 patch-evolved CVEs and their

corresponding 234 patches and analyzed them manually. We no-
ticed developers commonly employ two types of code modifications:
(1) Type 1: Adjust code without changing the fix logic. During soft-
ware evolution, developers often refactor code to enhance quality,
improve readability, or boost performance. Such changes usually do
not affect the fix logic of the patch. Take CVE-2016-2179 as an ex-
ample, in which a patch-evolved commit (commit 81926c) changed
the callee prototype from “void dtls1 clear received buffer(SSL *s)”
to “void dtls1 clear received buffer(SSL CONNECTION *s)”. Such
a change in type was to refactor code to enhance quality, without
affecting the repair logic (e.g., sanity checking the correctness of
the variable). Finally, we classified this case as “Modify parameters
of callees” under Type 1. (2) Type 2: Adjust or refine the patch’s fix
logic. After a patch is released, its fix logic might be further refined
by the developers. For instance, if the patch initially introduced a
sanitizer check to ensure that program state aligns with expecta-
tions, developers might later modify the conditions of this sanitizer
check, thereby refining the patch’s logic.

Table 5 detaile the results of the patch evolution patterns. For
54.7% of patch evolution cases, developers only refactor the code
without changing the patch’s fix logic. However, for 45.3% of cases,
developers might alter the original patch’s fix logic by changing
the patch itself or its context. Among these cases, 13.68% involve
changes to the patch context. In 14.53% of cases, conditions within
the patch are modified. Such changes should be carefully handled,
otherwise, new security issues can be easily induced (see Section 7).

Finding 6: Substantial code changes are made to refine or adjust the
patch’s fix logic (45.3% of cases), which should be carefully handled
since they might break the fix logic and be further exploited.
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6 RQ3: Evolution Impact
In this section, we investigate how patch evolution affects existing
1-day vulnerability detection tools, especially on the accuracy of
vulnerability detection. As aforementioned, we focus on two cate-
gories of detection tools: function-level tools and patch presence
test tools. Following the existing study [56], we adopt the assump-
tion that most of the evolved patches can still preserve the fixing
semantics to understand the evolution impact for most of the cases.
Under such an assumption, vulnerability detection tools should
recognize the evolved versions as secure or patched. Nevertheless,
it does not imply that the evolved patches will not introduce new
issues. We further performed a case study to show that the fix-
ing semantics of evolved patch can be changed and induce new
vulnerabilities in Section 7.

For function-level tools, we selected SAFE [25] and jTrans [40].
Existing study [24] has proven that SAFE performs well in function
similarity tasks, and can withstand various code disturbances in
real-world software (such as different levels of compiler optimiza-
tion and system architectures). jTrans is a recently proposed tool to
compare function similarity, the performance of which is shown to
surpass that of other similar tools [40]. For patch presence test tools,
we select PMatch [16] and BinXray [50]. PMatch is a learning-based
tool that detects the patch status in the target binary using unsu-
pervised embedding. BinXray is another advanced patch presence
test tool. Specifically, it generates a patch signature by diffing the
pre-patch and post-patch functions and then matches the target
function with the signature to determine the patch status.

Data preprocessing. We selected six projects from the Dataset
in Table 1 (FFmpeg, ImageMagick, libxml2, openjpeg, openssl, and
tcpdump) and utilized the patch-evolved CVEs in these projects,
containing 301 CVEs, in this experiment. We exclude the other
projects since this experiment requires compiling multiple versions
of the project, which is very time-consuming especially for those
large-scale ones such as linux. Besides, our study aims to evaluate
whether the performance of vulnerability detection tools is affected
by patch evolution, and 301 CVEs are sufficient to observe such
an impact. In particular, the above four tools require the binary
of the pre-/post-patch versions as references. Therefore, we need
to compile multiple binary versions for each CVE, including two
reference versions (pre-/post- patch versions) and several target
versions Specifically. For each of the 301 CVEs, we first compiled
the pre-/post-patch versions. Then, if the number of patch-evolved
commits for a CVE is four or fewer, we compiled all the evolved ver-
sions. Otherwise, we select 4 versions by quartiles chronologically
to save efforts and ensure consistency across different projects. We
refer to them as Q1, Q2, Q3 and Q4 respectively. For example, if we
have patch-evolved commits ordered from 1 to 7, we would choose
versions 1 (Q1), 3 (Q2), 5 (Q3), and 7 (Q4). In total, we compiled
1,521 versions of binary for these 301 CVEs. During the compilation
process, we used the command git checkout commit to switch to
the corresponding commit and compiled the software using gcc
with the -O2 optimization level following existing study [50]. The
compilation task took us approximately 120 hours in total. Then, we
conducted the following experiments using pre-/post-patch version
as references and the Q1-Q4 as target versions.

6.1 Function-Level Tools
Function similarity tools are widely used in 1-day vulnerability
detection tasks. If a function in the target software matches the
pre-patch function, it can be inferred that the target software is af-
fected by the vulnerability. However, existing researches [16, 26, 50]
suggest that the high similarity between vulnerable and patched
versions leads to a large number of false positives (FPs). This is
because the patches often introduce only small code changes, mak-
ing it difficult for function similarity tools to distinguish patched
functions from vulnerable ones.

To evaluate how the function similarity tools are affected by
patch evolution, we adopt the strategy from an existing study [7].
Specifically, we determined the safety of the target software based
on which reference version it is more similar to (i.e., if a testing
target is more similar to the pre-patch version than the post-patch
one, it is considered unpatched; otherwise, it is deemed patched).
Since patches have been evolved to four versions (i.e., Q1-Q4), if
a tool reports that the target binary (one of Q1-Q4) has no patch
applied, we consider there is a false positive.

In this way, we evaluate SAFE and jTrans by observing the false
positive rate (FPR) changes as the patch evolves. Figure 6a shows the
results for SAFE. The summary figure demonstrates an increasing
trend along the evolution of patches, starting at 0.15 and ending at
0.28. This suggests that as patches evolve, SAFE tends to produce
more FPs. Individual project results exhibit varying trends. For
instance, the FPR of FFmpeg increases initially but then decreases.
Libxml2 consistently observes the highest FPR, suggesting that
SAFE is ineffective to handle patches in this project.

Figure 6b, representing jTrans, shows a slightly different trend.
The summary FPR remains relatively stable across Q1-Q3 (i.e., 0.09,
0.09, 0.10) but then sees a notable increase in the Q4 (0.19). This
reflects that jTrans performs better in resisting code evolution
compared with SAFE. At the project level, openjpeg and libxml2
show considerable increases in the last version, while ImageMagick
maintains relatively stable FPR across all versions.

In conclusion, both SAFE and jTrans demonstrate an increased
tendency to generate false positives as patches evolve, more pro-
nounced in the last version. This could potentially indicate the
limitations of such tools in resisting to patch evolution.

Finding 7: As patches evolve, the false positive rates of function-level
tools SAFE and jTrans increase notably, rising from 0.15 to 0.28 and
0.09 to 0.19 respectively, suggesting limitations for function-level
tools in handling evolved patches.

6.2 Patch Presence Test Tools
In this section, we investigate how patch evolution impacts existing
patch presence test tools. Patch presence test tools are proposed
to enhance the precision of the above tools at the function level
by directly matching the patch signature in the target binary. As a
result, these tools are particularly suited for patch detection tasks.
Then, we evaluate how patch evolution affects patch presence tools.
The methodologies and metrics utilized are consistent with those
we used for the evaluation of function-level tools.

Figure 7a shows the statistical results for PMatch. As we can see
from the summary, the average FPR for PMatch increases from 0.29
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Figure 6: The impact of patch evolution on the function-level 1-day vulnerability detection tools jTrans and SAFE
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(b) BinXray. rectangle denotes the ratio of BinXray that cannot generate results due to significant changes.
Figure 7: The impact of patch evolution on the patch presence test tools PMatch and BinXray

to 0.35 as the patch evolves. This indicates a rising inaccuracy over
the progression of patch evolutions. This trend is also consistent
with function level tools, as shown in Figure 6. Looking at individ-
ual projects, FFmpeg shows a marginal increase in false positives
across various versions, while openssl and tcpdump display more
substantial increases in the final version. Libxml2 and ImageMagick,
on the other hand, show a significant decrease in Q1-Q3 followed
by an increase in Q4. This could be a limitation in the design of
PMatch, which might not account for the complexities and changes
that occur in the later patch evolutions.

Figure 7b shows the results for BinXray and the rectangles in-
dicate the ratio of the cases that BinXray cannot generate results.
If BinXray finds that the target binary differs too much from the
version of pre-patch and post-patch, it will report too much diff
directly. We refer to such cases as cannot generate results. As we
can see from the summary figure, the FPR remains consistently
low (<10%), demonstrating BinXray’s high precision. However, the
increasing cannot generate results rate reveals that BinXray’s recall
is compromised as the patch evolves. This is because BinXray only
considers the differences between the pre-patch and post-patch
versions to generate patch signatures and detect patch in the target
binary. However, software evolution can significantly alter the code
structure related to patches, thus making it difficult for BinXray
in matching patch semantics. As for individual projects, BinXray
shows the lowest FPR on openjpeg and libxml2, showcasing its preci-
sion. However, libxml2 also exhibits a proportion of 100% for cannot
generate results in Q3, indicating its limitations in patch recognition
as patches evolve.

4      pixel_info = AcquireVirtualMemory(columns,rows*
5   - number_planes_filled*sizeof(*pixels)); 
6  +                             MagickMax(number_planes_filled, 4)*sizeof(*pixels)); 
7 if (pixel_info == (MemoryInfo *) NULL)
8 ThrowReaderException(ResourceLimitError, "MemoryAllocationFailed");
9 pixels = (unsigned char *) GetVirtualMemoryBlob(pixel_info);
10 …
11    p=pixels + offset;
12    for (i=0; i < (ssize_t) operand; i++) {
13           if ((y < (ssize_t) image->rows) && ((x+i) < (ssize_t) image->columns)) {
14                 *p=pixel;  }}

Original Patch
Author: dirk

Evolved Version
Author: Cristy

//AddressSanitizer: heap-buffer-overflow

1   - pixel_info_length = columns*rows*MagickMax(number_planes,4);
2  +  pixel_info_length = columns*rows*number_planes_filled;
3 pixel_info = AcquireVirtualMemory(pixel_info_length, sizeof(*pixels));

Data flow

Figure 8: An example of exploiting the evolved patch of CVE-
2016-7515 from project ImageMagick

Finding 8: The performance of patch presence test tools degrade with
patch evolution. Tools like BinXray show an uptick for “cannot gen-
erate result” cases, peaking at 55.0%. This highlights the limitations
of patch presence test tools in resisting code evolution.

7 Discussion
7.1 A Case Study of Exploiting Evolved Patches
In RQ3, we follow the existing study’s assumption that most of the
evolved patches can still preserve the fixing semantics. However, as
we mentioned in RQ1, during software evolution, the developers
might unintentionally modify the code that is related to a CVE
patch, thus disrupting the patch’s fix logic. To validate this hy-
pothesis, we further perform a case study on the evolved patch for
CVE-2016-7515 (from ImageMagick). The original patch (commit
2ad6d3) is shown in Figure 8 (see Appendix). The patch implements
the fix logic by modifying the variable pixel info length to align
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the variable pixel info with its expected value. However, the vari-
able pixel info is modified by another developer during software
evolution. Then, we explore whether the evolved patch can be ex-
ploited using an existing directed fuzzer AFLGo [4]. In the evolved
version (commit 13db82), we used the original testcase of CVE-
2016-7515 as starting seed and set the patch-related code as the
target lines. Finally, we detected a heap buffer overflow as shown in
Figure 8. After a detailed examination, we found that it is the other
developer’s commit that modified the variable pixel info, ultimately
triggers the error. Finally, we manually analyzed the update records
of the vulnerability-relevant dataflow and confirmed that the new
vulnerability was fixed in commit e50f19f.

The above example demonstrates that during the software evo-
lution, developers might alter the original patch’s fix logic, thus
potentially induce new security threats. The occurrence of such phe-
nomena underscores the importance of studying patch evolution.
We believe that this study can shed important light on exploiting
evolved patches, and we left it as our important future work.

7.2 Actionable Suggestions
Our study demonstrates that patch evolution indeed poses security
risks and can impact the effectiveness of existing vulnerability de-
tection tools. The results and findings highlight the need to address
potential security issues during patch evolution. We provide action-
able suggestions from the following aspects for further exploration.

(1) Patch Evolution Sanitizer. In large OSS projects, various devel-
opers often collaborate. For instance, different authors may modify
code introduced from a previous security patch (i.e., in Finding-4,
93.2% of patches are modified by other developers). Moreover, in
Finding-6, we found that 45.3% of code changes are made to refine
or adjust the patch’s fix logic. This study can inspire a new tool to
detect whether such modifications indeed introduce security risks
(e.g., compromising the repair logic). Specifically, we can leverage
static analysis to infer whether certain patch evolutions might be-
long to Type 2 (i.e., as found in Finding-6, 45.3% of patches refine
or adjust the patch’s fix logic). If so, directed fuzzing techniques
(e.g., AFLGo [5]) can then be applied to test the modified context
related to the patch.

(2) Enhancing Patch Detection Tools. Our study found that the
false positive rates of existing tools increase during patch evolution.
This is because these tools generate patch signatures based solely
on the original security patch. Our findings can guide the design of
future tools to enhance their signature generation capabilities. In
particular, Finding 5 summarizes the patterns of patch evolution
and reveals that condition and relational features have been
modified the most during patch evolution. Such information can
be used to enhance patch signatures for better patch detection.

(3) Facilitating Patch Backporting: Patch backporting must con-
sider the consistency of patched code and context across different
versions. However, downstream software developers often backport
patches based solely on the original patches, making it challenging
to timely refine the patch logic. Our work on tracking patch evo-
lution assesses whether the original patch has undergone logical
changes. When patch evolution occurs, we can utilize program
analysis to infer whether certain evolutions have refined the patch
logic. If they do, the refined patch logic should also be considered
when backporting to downstream software.

7.3 Limitations
The inability to accurately model software refactoring and patch
evolution is a major limitation in our study. For instance, during
software evolution, the fix logic of a security patch can shift from
its original function to a new location. This can be mistakenly in-
terpreted as the patch being deleted. Nevertheless, we argue that
using static analysis to model the fix logic of security patches is
inherently a challenging task, given the diverse manners in which
software evolves. In this paper, we track patch evolution by ana-
lyzing the modified lines within the patch. This ensures that the
evolved patches are derived from the original ones. We also analyze
changes in the control and data flows related to the patch during
its evolution, providing a measure of the alterations in patch fix
logic to some degree.

8 Related Works
We discussed 1-day vulnerability detection tools in Section 2. we
introduce another relevant study as follows.

Patch Lifecycle Analysis. Numerous studies have explored the
lifecycle of security patches. Notably, Tan et al. [36], Li et al. [17],
Shahzad et al. [33], and Frei et al. [11] have conducted extensive
studies on the vulnerability lifecycle and patching timelines, uti-
lizing publicly accessible data from open-source repositories. In
addition, studies by Zheng et al. [56], Jiang et al. [13], and Dai et
al. [7] have examined patch propagation from the Android Open
Source Project (AOSP) to downstream vendors. These works typ-
ically concentrate on patch management within the relationship
between upstream and downstream patch management.

However, none of the existing studies have discussed the patch
evolution problem, thus narrowing the scope of patch lifecycle re-
search. In fact, according to our research, 81.1% of security patches
undergo evolution after their release. Among these, 29.6% are mod-
ified by developers within 90 days, indicating potential changes
in the patch’s repair logic. Our work is the first systematic study
of the phenomenon of security patch evolution, shedding light on
future research into patch related researches.

9 Conclusion
In this paper, we conduct the first empirical study on patch evolution
based on 1,046 CVE vulnerabilities and 2,633 patches, uncovering
several findings. We found 81.1% CVE patches evolve, involving
direct and indirect modifications and 29.6% patches evolve within 90
days. Through analysis of code feature changes and manual pattern
exploration, we understood the characteristics of patch evolution.
Furthermore, we found that patch evolution negatively impacts
the effectiveness of 1-day vulnerability detection tools significantly.
Finally, this study also reveals the evolved patches might induce
new security issues. We believe that our research can shed light on
future researches related to patch analysis.
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