
How Does Code Optimization Impact Third-party Library
Detection for Android Applications?

Zifan Xie∗†
Huazhong University of Science

and Technology
Wuhan, China

xzff@hust.edu.cn

Ming Wen∗†‡

Huazhong University of Science
and Technology
Wuhan, China

mwenaa@hust.edu.cn

Tinghan Li
Huazhong University of Science

and Technology
Wuhan, China

lith@hust.edu.cn

Yiding Zhu∗†

Huazhong University of Science
and Technology
Wuhan, China

ydzhu@hust.edu.cn

Qinsheng Hou
Shandong University; QI-ANXIN

Technology Research Institute
Qingdao, China

houweidejia959@gmail.com

Hai Jin∗§

Huazhong University of Science
and Technology
Wuhan, China

hjin@hust.edu.cn

Abstract
Android applications (apps) widely use third-party libraries (TPLs)
to reuse functionalities and simplify the development process. Un-
fortunately, these TPLs often suffer from vulnerabilities that attack-
ers can exploit, leading to catastrophic consequences for app users.
To mitigate this threat, researchers have developed tools to detect
TPL versions in the app. If an app is found using a TPL vulnerable
version, these tools will issue warnings. Although these tools claim
to resist the effects of code obfuscation, our preliminary study in-
dicates that code optimization is common during the app release
process. A lack of consideration for the impact of code optimizations
significantly reduces the effectiveness of existing tools. To fill this
gap, this work systematically investigates how and to what extent
different optimization strategies affect existing tools. Our findings
have led to a new tool named LibHunter, designed to against major
code optimization strategies (e.g., Inlining and CallSite Optimiza-
tion) while also resisting code obfuscation and shrinking. Extensive
evaluations on a dataset of apps with optimization, obfuscation,
and shrinking enabled show LibHunter significantly outperforms
existing tools. It achieves F1 value that surpass the best tools by
29.3% and 36.1% at the library and version levels, respectively. We
also applied LibHunter to detect vulnerable TPLs in the top Google

∗National Engineering Research Center for Big Data Technology and System, Ser-
vices Computing Technology and System Lab, Huazhong University of Science and
Technology (HUST), Wuhan, 430074, China
†Hubei Engineering Research Center on Big Data Security, Hubei Key Laboratory of
Distributed System Security, School of Cyber Science and Engineering, HUST, Wuhan,
430074, China
‡Corresponding author.
§Cluster and Grid Computing Lab, School of Computer Science and Technology, HUST,
Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695554

Play apps, which shows the scalability of our approach, as well as
the potential of our approach to facilitate malware detection.

Keywords
Code Optimization, Third-party Library, Android

ACM Reference Format:
Zifan Xie, Ming Wen, Tinghan Li, Yiding Zhu, Qinsheng Hou, and Hai Jin.
2024. How Does Code Optimization Impact Third-party Library Detection
for Android Applications?. In 39th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’24), October 27-November 1, 2024,
Sacramento, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3691620.3695554

1 Introduction
Android apps now hold a predominant share of the smartphone
app market, with over 2.44 million apps available in the Google
Play Store [43]. A significant contributor to Android’s success is its
open-source ecosystem, which fosters extensive developer engage-
ment and innovation. The ecosystem has led to the proliferation
of diverse third-party libraries (TPLs), which are integral to over
60% of the code in many Android apps. These libraries enhance
app functionality with features like advertising, social networking,
and payment services, streamlining development processes signif-
icantly [23, 29, 41, 62]. Numerous apps incorporate over twenty
different TPLs, according to recent studies [8, 20–22, 32, 52, 60].

However, such TPLs are not always free of risks, as they fre-
quently contain vulnerabilities that can pose significant threats
to users. Recent studies indicate that 74.95% of these libraries are
vulnerable and extensively used in various applications and other
TPLs, making them attractive targets for malicious exploits [4, 11,
14, 17, 48, 49]. This widespread integration not only increases the
attack surface but also potentially exposes users to severe secu-
rity threats. For instance, the notable vulnerabilities in Apache
Log4j2 [31] impacted over 35,000 Java packages, representing more
than 8% of the Maven Central Repository [38]. Despite efforts to
rectify these issues, many remain unresolved due to complex depen-
dency chains, delaying effective remediation and leaving thousands
of artifacts vulnerable. Consequently, one demanding challenge for
developers, particularly for platforms like Google Play, is to timely

https://orcid.org/0000-0002-3264-1684
https://orcid.org/0000-0001-5588-9618
https://orcid.org/0009-0001-6490-6210
https://orcid.org/0009-0001-8248-7937
https://orcid.org/0000-0002-1119-4766
https://orcid.org/0000-0002-3934-7605
https://doi.org/10.1145/3691620.3695554
https://doi.org/10.1145/3691620.3695554
https://doi.org/10.1145/3691620.3695554

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Zifan Xie, Ming Wen, Tinghan Li, Yiding Zhu, Qinsheng Hou, and Hai Jin

detect and manage such vulnerable libraries to safeguard end-users
from potential threats. Therefore, identifying vulnerable TPLs has
emerged as a critical and highly sought-after task, and detecting
TPL versions has become a widely recognized standard known as
Software Composition Analysis (SCA) [2, 24, 26].

Effective detection of TPLs is crucial for numerous security pro-
tocols. However, the utilization of code protection techniques such
as obfuscation (e.g., renaming classes and members), code shrink-
ing (e.g., removing unused code and resources), and optimization
(e.g., applying aggressive strategies to reduce app size and enhance
performance) significantly complicates this process. Common tools
like ProGuard [34], DashO [7], Allatori [1], and Android’s R8 com-
piler [35] are capable of implementing these code transformations
to protect an app’s code. A recent analysis indicates that 24.9% of 1.7
million free Android apps from Google Play undergo obfuscation
for distribution. This percentage increases to 50.0% among apps
that have achieved more than 10 million downloads [51].

Recent studies mainly utilize similarity-based methods for TPL
detection. These tools claim to withstand the effects of code obfusca-
tion and shrinking [5, 6, 10, 13, 16, 45]. For example, LibPecker [63]
constructs precise class signatures based on class dependencies and
uses an adaptive matching approach to compare libraries and appli-
cation classes based on a fuzzy weighted similarity, especially when
handling package flattening or class repackaging. LibScan [53], the
state-of-the-art tool, focuses on method-opcode similarity by ana-
lyzing the set-based inclusion relationship of per-method opcodes
and also evaluates call-chain-opcode similarity. Although these
tools are effective against code obfuscation and shrinking, they
overlook the effects of code optimization while optimization is
widely considered in modern compiler designs [25, 56, 57]. Notably,
R8, the component of Android’s standard build tools, is extensively
used by developers for comprehensive whole-program optimiza-
tion, which substantially changes code structures. This situation
prompts our investigation into how such optimizations affect the
performance of existing state-of-the-art TPL detection tools.

We first assess the prevalence of R8 usage by examining whether
apps choose to protect their code with R8. Specifically, we analyzed
2,347 open-source apps from F-Droid [15] by inspecting their Gradle
build files and checking whether these apps employ R8 for distribu-
tion. Our findings reveal that 41.1% of apps use R8, indicating that
deploying apps compiled with R8 is a common practice. We then
assess how code optimization affects the effectiveness of exist-
ing tools. We construct 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 with five app variants each using
different strategies using R8: “D8 alone”, “Obfuscation”, “Shrinking”,
“Optimization + Shrink”, and “Obfuscation + Optimization + Shrink”
(R8’s default strategy). Evaluations reveal that tools like LibScan
struggle with R8’s default strategy, with F1 scores significantly
reduced to 41.1% for library-level and 14.7% for version-level detec-
tion, highlighting the challenges posed by optimizations. However,
using 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 alone does not clarify which optimization strategy
most affects the performance. We then construct 𝑑𝑎𝑡𝑎𝑠𝑒𝑡2, consist-
ing of 13 app variants, each enabling a unique R8 optimization
strategy. This dataset helps to gain a deeper understanding of the
effects of different optimization strategies. Our findings suggest
that the Inlining and CallSiteOptimization (CSO) greatly diminish
the effectiveness of existing tools, thus calling actions to mitigate
such specific impacts.

Aiming to design better TPL detection tools that can resist code
optimization, we further examine the working mechanisms of how
such optimizations are applied in practice. We observe that cer-
tain optimization processes can be approximated and deduced
via fine-grained static analysis. For instance, for CSO, we can
analyze argument usages at method callsites to track unused or
consistently assigned parameters, thus tracking the prototype for
an optimized method. Based on such a key insight, we propose
an effective TPL detection tool named LibHunter via integrating
fine-grained static analysis. LibHunter’s goal is to address the chal-
lenging scenarios of detecting TPL versions when the app has
been optimized, obfuscated, and shrunk while maintaining low
costs. Specifically, LibHunter mainly contains three steps. First, Lib-
Hunter extracts class features for both the target app and TPLs.
It then enhances the TPL class features based on the approxima-
tion of CSO via static analysis. Such enhanced features enable
LibHunter to establish over-approximated class correspondence
relations between app and TPL classes. Second, LibHunter calcu-
lates method similarities using the method’s opcodes and strings.
If this similarity exceeds a predefined threshold, the methods are
considered fully matched. However, many methods cannot be fully
matched due to Inlining. For such cases, we consider them partially
matched if a significant portion of a TPL method’s features are
found within an app method. The insight is that if an app method is
synthesized from TPL methods, it will contain features of those TPL
methods. Third, LibHunter approximates the Inlining process along
with computing method similarities to finalize the method match-
ing correspondence for partially matched methods. These matched
methods are called cross-inlining matching methods. Finally, Lib-
Hunter computes a confidence score to determine the final class
correspondence and further calculates the similarity between the
TPL and the app. If the similarity exceeds a threshold, it confirms
the existence of the TPL.

Our evaluations show that LibHunter excels in challenging sce-
narios (i.e., optimized, obfuscated, and shrunk apps), it can achieve
the F1 score of 71.4% and 51.1% at the library and version levels,
respectively. On average, the F1 value of LibHunter outperforms
the best baselines by 29.3% and 36.1% at the library and version
levels. TPL detection tools can be used to detect vulnerabilities by
pinpointing the TPL versions [32, 59]. For each detected TPL, if
its version lies in the affected version range of a known CVE, the
tool will issue a warning (i.e., an App-CVE pair). By empolying
LibHunter, we can reveal the real-world risks of vulnerable TPLs
by applying it to actual apps. Finally, LibHunter reported 3,761
warnings for 10,000 top Google Play apps. As a comparison, we
found that baseline only report 2,039 warnings for these apps. This
is because the baseline struggles to detect apps when they are opti-
mized. Such results show the scalability of our approach, as well as
the potential of our approach to facilitate malware detection.

To summarize, we make the following major contributions:

• Originality. We are the first to target detecting TPL versions
in optimized Android apps, and we observe that deploying apps
with code optimization is a prevalent practice.

• Empirical Study. We conduct a systematic study to investigate
how code optimization affects the effectiveness of existing tools.
Our findings indicate that optimization significantly affects the

How Does Code Optimization Impact Third-party Library Detection for Android Applications? ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

effectiveness of existing state-of-the-art tools, with Inlining and
CallSiteOptimization (CSO) casting the most substantial impact.

• Evaluation. We implement our approach as a prototype, Lib-
Hunter. Extensive evaluations demonstrate its effectiveness in
detection of TPL versions, which also outperforms the SOTA
baselines, especially in optimized applications.

• Artifact. We make our approach, the dataset of TPLs and related
apps available at:

https://github.com/CGCL-codes/LibHunter

2 Background and Motivation
2.1 The D8 and R8 compiler
App developers frequently employ code obfuscation techniques
to protect against reverse engineering. Without these protective
measures, malicious individuals can decompile and scrutinize apps,
exposing potential security weaknesses. Of 1.7 million free Android
apps available on Google Play, approximately 24.9% undergo obfus-
cation prior to their launch [51]. This percentage increases to 50.0%
for popular apps that have surpassed 10 million downloads [51].

R8, the default tool for the Android build process, now performs
all of the code shrinking, obfuscation, and optimization tasks, which
has replaced the obfuscator Proguard [58]. D8 was the built-in DEX
compiler from Android Gradle Plugin 3.1.0 (March 2018), and R8
from Android Gradle Plugin 3.4.0 (April 2019) [58]. The D8 compiler
converts a .class file to a .dex file. R8 extends D8 by incorporating
additional capabilities for code shrinking, obfuscation, and opti-
mization [44]. If developers do not apply third-party plugins to
enable other obfuscators, they should include the statement “mini-
fyEnabled true” in the “build.gradle” configuration file to enable R8
for these capabilities when building apps. Otherwise, D8 will be
enabled by default, along with some simple optimizations, such as
Switch Rewriting and String Optimizations.

Table 1 shows the default strategies supported by R8, which are
automatically activated if users enable R8. Users can further specify
“-dontX” to disable a particular strategy. For example, specifying
“-dontoptimize” would turn off code optimization [18, 19].

• Obfuscation: It includes Package Flatten and Identifier Renaming.
The former disrupts the original code hierarchy structure, repack-
aging classes from several packages into a single one. The latter
involves renaming packages, classes, methods, and variables. For
instance, identifiers may be changed to meaningless characters
like x and y.

• Shrinking: It identifies and securely eliminates unused classes,
fields, methods, and attributes from the app.

• Optimization: It encompasses 13 advanced strategies that mod-
ify code to enhance runtime performance and decrease the app’s
size. Due to page limitations, we have placed the descriptions of
each strategy on our website [37]. Notably, these strategies are
internal options, and users can enable or disable all. Moreover, R8
also supports other strategies (e.g., DeadCodeRemoval). However,
these optimizations are not controlled by internal options but
are embedded into the optimization process. Therefore, they are
excluded from the 13 options.

Table 1: Supported Strategies for R8. “Obf” denotes Obfusca-
tion, “Opt” denotes Optimization, “Srk” denotes Shrinking.

Type Strategy Type Strategy

Obf Package Flatten

Opt

InitializedClassesAnalysis
Identifier Renaming CallSiteOptimization

Srk Tree Shaking HorizontalClassMerger

Opt

Inlining NameReflection
ClassInlining VerticalClassMerger
Devirtualization StringConcatenation
EnumValueOptimization EnumUnboxing
Outlining SideEffectAnalysis

2.2 Related Work
Existing TPL detecting tools. Currently, many detection tools
have been proposed, aiming to counteract the effects of code obfus-
cation and shrinking. LibScout [3] leverages class hierarchy to map
out TPL features. It creates library signatures using a fixed-depth
Merkle tree, which simplifies the package layer and gathers non-
obfuscated partial method signatures. LibPecker [63] builds precise
class signatures from class dependencies. It employs an adaptive
class matching that performs a fuzzy weighted similarity match
between library and app classes if the similarity surpasses a certain
threshold. It’s particularly sensitive to package flattening or class
repackaging as its package matching depends on package hierarchy.
LibID [61] identifies features resilient to obfuscation and introduces
a multi-phase process. Initially, it matches candidate TPL classes
with app classes if each basic block of an app class matches an iden-
tical block in a library class. Then, through dependency matching, it
selects the matched pairs from these candidates, employing a binary
integer programming model to maximize matched pairs. Finally,
it confirms the matched TPL version by evaluating the proportion
of matched classes in the app package. ATVHunter [59] adopts a
two-phase approach for detecting TPLs. The first phase assigns a
unique serial number to each basic block in a method, transform-
ing the CFG from adjacency lists into a method signature based
on these numbers. The second phase utilizes fuzzy hashing across
sliding-window opcodes to mitigate localized feature changes due
to obfuscation. LibScan [53] is a state-of-the-art tool. It focuses on
method-opcode similarity, examining the set-based inclusion rela-
tionship of per-method opcodes. It also assesses call-chain-opcode
similarity based on the set-based inclusion relationship of call-chain
opcodes. While the LibScan paper does include experiments on the
impact of optimization on tool performance, it lacks further analy-
sis of how optimizations affect performance and does not propose
solutions to resist these effects.

Although these tools have been proven to resist code obfuscation
and shrinking, none has taken optimization into consideration. In
fact, as part of Android’s default build tools, R8 is widely adopted by
developers to enable extensive whole-program code optimization
strategies, significantly altering the code structure. Therefore, we
are motivated to investigate systematically how code optimization
impacts the TPL detection tools.

3 Empirical Study
We aim to conduct a comprehensive study into how code optimiza-
tion affects the performance of existing TPL detection tools by
answering the following research questions:

https://github.com/CGCL-codes/LibHunter

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Zifan Xie, Ming Wen, Tinghan Li, Yiding Zhu, Qinsheng Hou, and Hai Jin

• RQ1: Pervasiveness of R8: How pervasive it is for Android
apps to utilize the R8/D8 compiler?

• RQ2: Impact of Code Optimization: How does code optimiza-
tion affect the performance of existing TPL detection tools?

• RQ3: Impact of Optimization Strategies: Which code opti-
mization strategies cast a greater impact on the performance of
TPL detection tools?

3.1 Dataset Construction
APP Collection. To conduct experiments on TPL detection, we
need to create a dataset that maps apps to TPLs. This dataset should
meet two criteria: (1) it must provide the mapping information
between apps and TPLs, and (2) it should include the complete
version set for each TPL. Following existing research [53], we opt
for F-Droid [15], an open-source Android app repository, to identify
which TPL versions are used by each app. Specifically, we crawled
4,151 open-source apps from F-Droid. By analyzing the Gradle
build files, we were able to determine all the TPLs, along with their
versions that are utilized by each app. Following existing work [55],
we focus on TPLs that involve vulnerabilities (i.e., associated with
at least one CVE). If an app uses a vulnerable version of a TPL, it
may suffer from potential security threats.

To investigate the impact of code optimization on the perfor-
mance of TPL detection tools, we randomly select 200 apps from
the above 4,151 ones. We discover that these 200 apps correspond
to 31 unique vulnerable TPLs, resulting in a total of 379 app-TPL
pairs. We manually compiled five variants of these apps by speci-
fying the following options: (1) D8 alone, (2) Obf, (3) Srk, (4) Opt
+ Srk, and (5) Obf + Opt + Srk (R8’s default strategy). In particu-
lar, “D8” refers to enabling D8 without R8; “Obf” means only R8’s
obfuscation was enabled; and “Opt + Srk” indicates only R8’s op-
timization and Shrinking were enabled. We designed this variant
since some optimization strategies (like HorizontalClassMerger
and EnumUnboxing) only work when Shrinking is enabled. Con-
sequently, our dataset comprises five sets of apps: one set of 200
D8-compiled apps and four sets of R8-compiled apps (200× 4) using
different compiling options, which is marked as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1.

As aforementioned, R8 offers 13 advanced optimization strate-
gies. However, these strategies are internal options, allowing users
only to turn them all on or off. Therefore, using 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 alone
cannot provide insights into which specific optimization strategy
impacts the TPL detection tool’s performance the most. To gain a
deeper understanding of the effects of different optimization strate-
gies, we first obtained the R8 source code (commit=48c8b6) and
manually modified the code to compile 13 R8 variants, each en-
abling only one optimization strategy. For instance, the variant
“r8 Inlining” only enables the Inlining while disabling the others.
We then randomly selected 50 apps from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 and compiled
them using these 13 R8 variants. Since many optimization options
are only activated when shrink is enabled, we also enable Shrinking
during the compilation process. Consequently, this dataset com-
prises 650 (50 × 13) apps, which is marked as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡2.
Metrics. We evaluate performance of TPL detection tools at li-
brary and version levels. library-level detection refers to recogniz-
ing the TPLs used within an app without detailing their versions.
Version-level detection involves not only identifying the correct

TPLs but also determining their specific versions. We then em-
ploy the metrics 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 , 𝐹1-value =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 following existing studies [53, 59].
For library-level detection, a true positive (TP) occurs when an

app uses a TPL, and the tool successfully identifies it. The false pos-
itive (FP) happens when the tool mistakenly reports a TPL that the
app does not actually include. The false negative (FN) arises when
the tool fails to detect a TPL that is present in the app. Similarly,
at the version level, a false positive means the tool identifies the
specific version of a TPL while the app uses another version. In this
context, a true positive refers to correctly reporting a TPL version
that does exist in the app. For example, if a tool reports that an app
is using Retrofit 2.5.0, but the actual TPL version is 2.6.0, we consider
this case a true positive at the library level but a false positive at
the version level.
TPL Collection. We crawled all versions of 31 vulnerable TPLs
from sources such as Maven Central [38] and Google’s Maven repos-
itory [36], etc. TPLs are typically distributed in ‘.jar’ or ‘.aar’ formats.
The ‘.jar’ files contain bytecode files, whereas ‘.aar’ files encompass
bytecode along with additional Android-specific files. Finally, our
dataset contains 31 unique TPLs and 3,447 corresponding versions.
Tool Selection. We select four state-of-the-art TPL detection tools,
including LibScout [3], LibPecker [63], LibID [61], and LibScan [53]
as the target tools to evaluate their performance.

3.2 RQ1: Pervasiveness of R8/D8
We focus on the pervasiveness of employing the R8/D8 compiler
for apps. Typically, developers produce two app variants: a debug
version for troubleshooting and a release version for distribution.
We check whether the release version has R8/D8 enabled since it
can cast real impact. From the initial set of 4,151 apps in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1,
we filtered out those with a Gradle Plugin version below 3.1.0, leav-
ing us with 2,347 apps. We exclude certain apps because D8 hadn’t
been released before Gradle Plugin 3.1.0. Additionally, these apps
haven’t been updated for many years, making them outdated. We
then analyze the Gradle configuration files of these apps by the
following steps: (1) We first determine if any other obfuscators,
such as Proguard [34] and Allatori [1], have been used, as these
have been extensively studied among existing researches [53, 59].
(2) Subsequently, we identify the option “minifyEnabled true” fol-
lowing the oficial documentation [35]. If it is present, we consider
R8 is being employed. Otherwise, we consider D8 is being used.
Result. In our analysis of 2,347 apps, we found that 1,380 (58.8%)
use D8, 964 (41.1%) use R8, and only 3 apps (0.001%) resort to other
obfuscators. This suggests that deploying apps compiled with R8 is
a prevalent practice. We conjecture that commercial apps released
on vendors like Google Play [33] may also use R8 to protect their
code. This observation prompts us to conduct a systematic analysis
of how code optimization affects the efficiency of TPL detection
tools. However, existing studies mainly focus on other uncommon
obfuscators (e.g., DashO [7]), which might cause bias.

Answer to RQ1: Our analysis of 2,347 Android apps revealed a sig-
nificant trend: 58.8% utilize D8, while 41.1% opt for R8, highlighting
the prevalent use of R8 in enhancing app security through code op-
timization, obfuscation, and shrinking in modern app development.

How Does Code Optimization Impact Third-party Library Detection for Android Applications? ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

3.3 RQ2: Impact of Code Optimization
We aim to evaluate the performance of existing TPL detection tools
on 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 as collected in Section 3.1.
Overall Results. Table 2 shows the comparison between differ-
ent TPL detection tools. We can find all tools perform best on
D8-compiled apps, achieving their highest F1 value. We can find
LibScan leads 91.6% for library-level detection and 85.8% for version-
level detection. For obfuscated apps, LibScan’s F1 value slightly
dipped to 84.4% for version-level, demonstrating a certain level of
resilience. However, others tools like LibID, plummeted to the F1
of 0.6%, indicating severe struggles with code obfuscation.

The decline became more pronounced with the R8 default strat-
egy (Opt + Obf + Srk), where even the highest F1 value nosedived
to a disappointing range around 41.1% for library-level and merely
14.7% for version-level detection (i.e., achieved by LibScan). Such
results clearly indicate a significant drop in the effectiveness of TPL
detection tools when facing complex app compilations.
FP analysis. For D8-compiled apps, false positives primarily stem
from simple method-level optimizations introduced by D8, impact-
ing tools that rely on method features. For example, if the app
method contains opcodes from the TPL method, LibScan will sim-
ply consider these two methods as matching since some obfuscators
(e.g., DashO) may insert redundant code into the app method. How-
ever, D8 introduces String Optimizations, which optimize bytecode
by precomputing string operations. This may change the opcodes
in the app methods, leading to mismatches for LibScan. For R8-
obfuscated apps, R8 will break the original structure of the code
hierarchy and repackage classes into new packages. However, tools
like LibScout, LibPecker, and LibID assume most obfuscators will
not alter internal package hierarchy structures for TPL identifica-
tion, thus significantly compromising their effectiveness. In R8-
shrunk apps, where unnecessary classes, methods, and fields are
pruned, removing numerous methods and fields from a class reduces
the similarity between two classes. If tools set higher thresholds
for method/class/library match similarity, shrinking can impact
their performance significantly. For R8-optimized apps, R8 en-
ables 13 advanced whole-program optimizations, which change the
code structure and features dramatically. For example, Inlining will
replace a function call with the callee’s entire code at the call site in-
stead of performing a regular function call; VerticalClassMerger will
attempt to merge parent and child classes into one. These optimiza-
tions can eliminate existing methods or synthesize new methods in
a class, thus significantly affecting existing tools that ignores the
optimization for library matching.

Apps that enable code optimization, obfuscation, and shrinking
simultaneously present a challenging scenario. This combination
significantly reduces the F1 value of existing tools, mainly because
their designs did not account for such modifications.

Answer to RQ2: Experiments show that advanced tools like LibScan
struggle under R8’s default strategy (Obfuscation + Optimization +
Shrink), with F1 value dropping to about 41.1% for library-level and
14.7% for version-level detection. This significant drop underscores
the challenge existing tools face, as they were not designed to handle
such complexities introduced by code optimization.

Figure 1: Detection results of LibScan on 𝑑𝑎𝑡𝑎𝑠𝑒𝑡2. The red
dashed line shows the worst-case scenario, and the red solid
line shows the best-case scenario.

3.4 RQ3: Impact of Optimization Strategies
We delve further into how different optimization strategies impact
tool performance. Since LibScan is currently the most advanced
tool and has achieved the optimum results in Section 3.3, we further
evaluate its performance on𝑑𝑎𝑡𝑎𝑠𝑒𝑡2. Note that each app in𝑑𝑎𝑡𝑎𝑠𝑒𝑡2
enabled only one optimization strategy, along with Code Shrinking.
Results. Figure 1 shows the detection results of LibScan. For the
library level, we use horizontal lines to demarcate the spectrum
of results: one representing the optimal F1 value (0.64), obtained
when shrinking alone was enabled, and the other indicating the
worst score (0.38), achieved when both shrinking and all optimiza-
tion options were activated. These benchmarks clarify the best
and worst-case scenarios against which individual strategy perfor-
mances were compared.

While most strategies show F1 value that are close to the best
performance (within 57% to 60% range), indicating a limited impact
on the effectiveness of LibScan, two strategies stand out due to their
markedly lower F1 value. The strategies of Inlining and CallSite Op-
timization (CSO) recorded F1 value of 41.7% and 42.6%, respectively,
positioning them nearest to the worst-case scenarios among all
strategies. At the version level, a similar trend is observed, reinforc-
ing the conclusion that Inlining and CSO are the most impactful
strategies, notably diminishing the effectiveness of LibScan. This
stark deviation suggests that these two optimization techniques
significantly degrade the tool’s performance when implemented
independently. This analysis indicates that enabling either of these
two options independently is likely to compromise the effectiveness
of TPL detection, suggesting areas for further investigation.
Analysis on Inlining andCallSiteOptimization (CSO). For apps
with CSO enabled, the parameters of a method can be removed. As
shown in Figure 2a, if a method’s parameter is assigned the same
constant across all callsites, R8 can eliminate this parameter and
replace it with the constant. If the return value of the method is
ignored at all callsites, its return type can be set to void. Additionally,
if a parameter is not used within the method’s body, it can also be
removed. Although this strategy is simple, it significantly affects
the effectiveness of LibScan. LibScan assumes that code obfuscation
does not change the number of method parameters. Thus, in its

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Zifan Xie, Ming Wen, Tinghan Li, Yiding Zhu, Qinsheng Hou, and Hai Jin

Table 2: Comparison on the Effectiveness of TPL Detection Tools to Different App Variants. PR=Precision, RC=Recall.

Detection Level App Variants LibScan LibPecker LibScout LibID
PR RC F1 PR RC F1 PR RC F1 PR RC F1

library-level

D8-compiled 89.8% 93.4% 91.6% 77.3% 92.0% 84.0% 83.0% 74.5% 78.5% 77.4% 84.6% 80.8%
Obf 89.8% 92.9% 91.3% 74.3% 21.1% 32.8% 66.7% 0.6% 1.1% 50.0% 0.3% 0.6%
Srk 88.0% 64.3% 74.3% 82.1% 31.1% 45.1% 85.7% 10.2% 18.2% 56.3% 5.8% 10.6%
Opt+Srk 83.7% 27.2% 41.1% 57.1% 2.2% 4.2% 79.3% 42.2% 55.1% 71.4% 1.7% 3.3%
Opt+Obf+Srk 83.7% 27.2% 41.1% 57.1% 2.2% 4.3% 66.7% 0.6% 1.1% 50.0% 0.3% 0.6%

version-level

D8-compiled 80.5% 91.9% 85.8% 74.0% 89.5% 81.0% 84.0% 71.1% 77.0% 77.5% 81.0% 79.2%
Obf 78.6% 91.1% 84.4% 80.8% 17.7% 29.1% 100.0% 0.6% 1.1% 100.0% 0.3% 0.6%
Srk 53.9% 49.2% 51.5% 57.4% 20.6% 30.3% 66.7% 7.0% 12.7% 83.3% 4.9% 9.3%
Opt+Srk 30.1% 10.1% 15.2% 87.5% 1.9% 3.7% 87.9% 39.1% 54.1% 80.0% 1.4% 2.7%
Opt+Obf+Srk 29.1% 9.8% 14.7% 87.5% 1.9% 3.8% 100.0% 0.6% 1.1% 100.0% 0.3% 0.6%

// C1: Constant Param Value

void fun1(int a) { retrun a;}

callsite1: fun(1)

// C2: Unused Return Value

int fun2() { retrun a;}

callsite2: fun()

// C3: Redundant Param

void fun3(int a){ retrun; }

(1) ‘a’ are assigned

same constant

(2) return value of

callee is unused

(3) ‘a’ is redundant

// C1

int fun(){ return 1;}

callsite1: fun()

// C2

void fun2() { retrun;}

callsite2: fun2()

// C3

void fun3(){ retrun;}

A

B

C D

(1) Single Caller (2) Multi Caller
AB

B

• multi callsites
• limit={28,16,12,10}

CB

DB
• single callsite

(a) Illustration of CallSite Optimization in R8.

// case1:

int foo(int a) { retrun a;}

callsite1: foo(1)

callsite2: foo(1)

// case2:

void foo(int a){ retrun; }

(1) ‘a’ are assigned

same constant or

(2) ‘a’ is unused

// case1, delete ‘a’:
int foo(){ return 1;}

callsite1: foo()

callsite2: foo()

// case2, delete ‘a’:

void foo(){ retrun; }

A

B

C D

(1) Single Caller (2) Multi Caller
AB

B

• multi callsites
• limit={+∞,28,16,12,10}

CB

DB
• single callsite

(b) Illustration of Inlining in R8.

Figure 2: Illustration of Inlining and CallSite Optimization.
These two strategies cast the greatest impact on the TPL de-
tection tool LibScan.

pre-match phase, if a method within an app class does not align
with any method in a TPL class in terms of type and parameter
count, these classes are deemed non-matchable. Clearly, the CSO
strategy breaks this assumption because the number of method
parameters can decrease, thus impacting LibScan’s effectiveness.

For apps with Inlining enabled, the features of relevant methods
will be altered. The main advantage of Inlining is to broaden the
optimization scope by optimizing caller and callees together. Fig-
ure 2b shows the process of Inlining. Specifically, if a callee has only
one callsite in the program (called Single Caller), R8 attempts to
inline the callee into the caller. In another scenario, where a callee
is invoked multiple times (called Multi Caller), R8 may not opt to
inline since this could increase the program’s size (as the body of
the callee is replicated multiple times). Therefore, R8 heuristically
defines an array that dictates the maximum size of callee allowed
for inlining based on the number of callsites. The array is defined as
{+∞, 28, 16, 12, 10}. For example, if a callee is called at two callsites,
it will be inlined only if its size is 28 or smaller; if a callee is called
at four callsites, the size restriction is 10. However, if the callee
has more than five callsites, Inlining will not occur. Therefore, if a

TPL method inlines its callees and synthesizes into an app method
𝑚𝑎 , then the code structure of 𝑚𝑎 will significantly change. Since
LibScan was not designed with the impact of Inlining, this strategy
has increased its false negative rate for method matching. In its
coarse-match stage, if an app method inlines other methods, it will
not match the corresponding TPL method.
Insights. We found that Inlining and CSO have the most signifi-
cant impact on LibScan’s performance. However, addressing the
challenges introduced by such optimizations is non-trivial. For-
tunately, we observe that such optimization behaviors can be
approximated and inferred via fine-grained static analysis.
For instance, for CSO, we can analyze argument usages at method
callsites to track unused parameters or return value, thus inferring
the prototype for an optimized method (Insight#1). For Inlining,
we can follow the Inlining process and analyze which methods are
likely to inline their callees within TPL binaries as well as how
these methods are synthesized into an app method (Insight#2).
Therefore, we can design a new TPL detection tool by integrating
such insights to resist the impact of optimization.

Answer to RQ3: Our study shows that Inlining and CallSiteOpti-
mization strategies exert the most substantial influence on LibScan’s
effectiveness. They alter the code structure, thus breaking the as-
sumption of LibScan. It opens up the possibility of developing a
new tool that specifically models the mechanisms of Inlining and
CallSiteOptimization, aiming to resist their effects.

4 Approach
In this section, we present LibHunter that integrates the insights
gained from our empirical studies to detect TPL versions in apps,
which can effectively resist default strategies of R8 (optimization,
obfuscation, and shrinking). The workflow of LibHunter is illus-
trated in Figure 3, which starts by taking an app with a TPL as input
and outputs a verdict on the TPL’s presence within the app.

However, determining the presence of TPL is challenging, espe-
cially when we strive to accommodate obfuscated, optimized, and
shrunk code. To equip LibHunterwith the capability of optimization
resilience, the key insight is to extract optimization-resilient se-
mantics to compare the app’s semantics with the candidate TPL. As
aforementioned, the optimization process can be approximated via

How Does Code Optimization Impact Third-party Library Detection for Android Applications? ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

fine-grained static analysis. Therefore, our proposed optimization-
resilient semantics mainly include two components: (1) The en-
hanced TPL features by integrating Insight#1. Since CSO alters
a method’s prototype, we can infer the form of a TPL method’s
prototype after CSO by referring the call graph and datafow of the
TPL through fine-grained static analysis. This aids in the match-
ing of method signatures. (2) The cross-inlining method matching
by integrating Insight#2. Typical Inlining will synthesize multi-
ple TPL methods into one app method. We follow this process
to determine whether a method will inline its callees, thus pre-
dicting the synthesized method’s features. This enhances method
matching precision and boosts TPL detection effectiveness. By inte-
grating these optimization-resilient components, LibHunter can ac-
curately detect TPL versions. LibHunter is composed of three steps:
Signature-based Class Matching, Similarity-Based Method Matching
and Cross-Inlining Method Matching, which are described as follows.

4.1 Signature-based Class Matching
In this step, LibHunter builds signatures (i.e., a set of class features)
to match the classes between the app and TPL. The signatures
should remain consistent even if the classes have been optimized,
shrunk, or obfuscated. Through our investigation, we identify cer-
tain code features that remain stable through code transformations.
Thus, if the features of an app class and a TPL class are matched,
they move on to the next steps; otherwise, the determination of
class correspondence for this pair ceases.

We categorize such code features used for fingerprinting into
two types: field-level and method-level features. Following exist-
ing research [3, 53, 59], we assign fuzzy signatures to each field
and method to resist obfuscation. For fields, LibHunter records the
declaration of the field and uses a placeholder X for user-defined
classes. For example, a field declared as MyClass f2 would have a
fuzzy signature of X. LibHunter denotes all fields within a class as
a set, 𝑆𝑓 𝑖𝑒𝑙𝑑 . For method fuzzy signatures, LibHunter leverages the
method’s return type and parameter types. For example, a method
with the prototype “String fun(int p0)” would have its fuzzy signa-
ture extracted as “Ljava/lang/String;,int”. Finally, LibHunter records
all the methods in a set named 𝑆𝑚𝑒𝑡ℎ𝑜𝑑 . We use 𝑆𝑓 𝑖𝑒𝑙𝑑 and 𝑆𝑚𝑒𝑡ℎ𝑜𝑑

as the class signature.
Although the use of fuzzy signatures is a standard practice in

existing works [3, 53, 59], CSO can alter the number of parameters
in a method, which can change the method fuzzy signature. To ad-
dress this, we need to infer what the method’s prototype would look
like after CSO. Specifically, we construct enhanced TPL features
through static analysis. For a given TPL method𝑚, LibHunter ob-
tains all callers of𝑚 by querying the call graph and performs intra-
procedural data flow analysis on these callers. LibHunter records
the arguments passed to parameters of 𝑚. If a parameter is consis-
tently assigned the same constant across all callsites, it is marked as
unused. Additionally, LibHunter identifies whether the return value
of 𝑚 is discarded across all callsites, and if so, marks the return
type as unused. Finally, LibHunter identifies parameters within
the body of method 𝑚 that are unused, marking them as unused.
Subsequently, we will update the fuzzy signature for𝑚. We use the
“?” symbol from regular rule to indicate that a marked parameter
can appear zero or one times. For example, given a method with

the prototype “int fun(int p1, long p2)”, if the return type
and “p2” are marked as unused, its fuzzy signature is represented
as a regular rule “^(int|void),int(,long)?$”. This rule can be
used to perform method signature matching. We call such regular
rules as enhanced TPL features.

LibHunter then aims to locate candidate classes in the app that
correspond to those classes in the TPL. Specially, given a class in
TPL with the corresponding signature, LibHunter traverses all the
classes in the app. We check whether 𝑆𝐴𝑃𝑃

𝑓 𝑖𝑒𝑙𝑑𝑠
is contained in 𝑆𝑇𝑃𝐿

𝑓 𝑖𝑒𝑙𝑑𝑠

and 𝑆𝐴𝑃𝑃
𝑚𝑒𝑡ℎ𝑜𝑑𝑠

is contained in 𝑆𝑇𝑃𝐿
𝑚𝑒𝑡ℎ𝑜𝑑𝑠

(the method signatures are
matched using regular rules). We consider this class pair qualified
for the next steps of class correspondence detection if they meet
the requirements. The reason is that when unused methods and
fields are removed from a class, the remaining methods and fields
should stay within the original class.

4.2 Similarity-Based Method Matching
The signature-based class matching step might match multiple app
classes to a single TPL class and vice versa, potentially leading to
incorrect matches. Therefore, in this step, LibHunter try to match
methods between the app class and TPL class to further determine
if some correspondences are false. Consequently, this process elim-
inates incorrect class matches and reduces the instances where
multiple app classes are incorrectly matched to one TPL class.

Typical inlining will integrate the callees into a caller when cer-
tain conditions are met. Since the caller and callees might originally
belong to different classes, an app class could contain code from
multiple TPL classes. Therefore, we do not seek direct class-level
feature matching but rather based on method matching. Specifically,
LibHunter utilizes opcodes and strings within methods for method
matching because these fundamental features are commonly used
in other works for assessing method similarity [53, 59]. We catego-
rize matching methods into two types: Fully Matching and Partially
Matching. Fully Matching refers to instances where the similarity
between an app method and a TPL method exceeds a threshold,
resulting in a direct match. For Partially Matching, it refers to situa-
tions where the app method, having inlined other methods, contains
features of the caller method in TPL. For instance, if a TPL method
x1 inlines another method x2 and synthesizes into app method y,
then the features of x1 should be contained in the features of y.
These partially matched methods undergo final matching in the
Cross-Inlining Method Matching phase.

For an app class 𝑐𝑎 and a TPL class 𝑐𝑡 , assume that 𝑚𝑎 and 𝑚𝑡

are a method within 𝑐𝑎 and 𝑐𝑡 , respectively. if their fuzzy signatures
match (through regular rule), they are considered as Fully Matching
if they satisfy the following equation:

𝑠𝑖𝑚𝑓 𝑢𝑙𝑙 (𝑚𝑎,𝑚𝑡) =
𝐽 𝐷 (𝑚𝑜𝑝

𝑎 ,𝑚
𝑜𝑝
𝑡)

2 +
𝐽 𝐷 (𝑚𝑠𝑡𝑟

𝑎 ,𝑚𝑠𝑡𝑟
𝑡)

2 ≥ 𝑇1 (1)

where 𝑚𝑜𝑝
𝑎 and 𝑚𝑠𝑡𝑟

𝑎 are the opcodes set and strings set within 𝑚𝑎

respectively; 𝑚𝑜𝑝
𝑡 and 𝑚𝑠𝑡𝑟

𝑡 are the opcodes and strings for 𝑚𝑡 ; the
𝐽𝐷 calculates the Jaccard similarity [42] between two feature sets;
𝑇1 is the predefined threshold at method level. We set the weights
for opcodes and strings at 0.5 each because both contribute to the
accuracy of method matching and the 0.5 helps avoid bias toward
either instructions or data content. According to the formula, a

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Zifan Xie, Ming Wen, Tinghan Li, Yiding Zhu, Qinsheng Hou, and Hai Jin

Android App

Construct
Call Graph

Call Graph
Enhanced

TPL Features

Extract

Extract APP
Features

signature-based
class matching

Opcode-based

method-level
matching

Input

Input

Input

Fully Matching
methods

Partially Matching
methods

Cross-inlining
Method matching

Library Detection

APP

 TPL Call Graph

Enhanced
TPL Features

APP Features

Construct

Extract

Extract

Preprocessing Matching

Input

Library Detection

Partially Matching
Methods

Fully Matching
Methods

Step3:

Cross-Inlining
Method Matching

Step1:

Signature-Based
Class Matching

Step2:

Similarity-Based
Method Matching

Figure 3: Workflow of LibHunter

higher similarity score indicates that the two methods share similar
features. Theoretically, each TPL method should be matched by, at
most, one app method. Therefore, if multiple app methods from the
same class match a single TPL method, LibHunter identifies the
app method with the highest 𝑠𝑖𝑚𝑓 𝑢𝑙𝑙 value as the final match to
the TPL method.

Then, we further identify partially matched methods within 𝑐𝑎
and 𝑐𝑡 that are not fully matched. Since an app method may inline
other methods, we assess how many features of the TPL method are
contained in the app method. Specifically, we consider two methods
that satisfy the following formula to be partially matched.

𝑠𝑖𝑚𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑚𝑎,𝑚𝑡) =
|𝑚𝑜𝑝

𝑎

⋂
𝑚

𝑜𝑝
𝑡 |

|𝑚𝑜𝑝
𝑡 | × 2

+
|𝑚𝑠𝑡𝑟

𝑎

⋂
𝑚𝑠𝑡𝑟

𝑡 |
|𝑚𝑠𝑡𝑟

𝑡 | × 2
≥ 𝑇1 (2)

For an app method𝑚𝑎 , we do not select the TPL method with the
highest 𝑠𝑖𝑚𝑝𝑎𝑟𝑡𝑖𝑎𝑙 . Instead, we include all TPL methods in 𝑐𝑡 that
satisfy Equation 2 into a one-to-many list 𝐿𝑚𝑎

. This is because some
incorrect TPL methods only contain a few instructions (e.g., return),
leading to a high 𝑠𝑖𝑚𝑝𝑎𝑟𝑡𝑖𝑎𝑙 value. We will determine the final
matches in the Cross-Inlining Method Matching phase.

In LibHunter, TPL features are extracted directly from their bina-
ries, and thus, they contain a complete set of class features. However,
in-app versions of a TPL class may contain only a small subset of
features due to code shrinking. Therefore, LibHunter only considers
an app class 𝑐𝑎 as a candidate match to a library class 𝑐𝑡 if all meth-
ods in 𝑐𝑎 match at least one method in 𝑐𝑡 (either fully or partially).
This is because code shrinking does not affect this index. This can
help eliminate certain incorrect class correspondences.

4.3 Cross-Inlining Method Matching
To further identify the corresponding TPL method 𝑚𝑡 from the
list 𝐿𝑚𝑎

for app method 𝑚𝑎 , we attempt to model the method in-
lining process. This helps us track how certain TPL methods are
synthesized into an app method.

We have already introduced the R8 Inlining strategy in Sec-
tion 3.4. Following this strategy, we can analyze which methods
are likely to inline their callees within TPL binaries. For each TPL
method 𝑚𝑡 in 𝐿𝑚𝑎

, we generate its call chains on the call graph
using depth-first traversal. We then attempt to synthesize𝑚𝑡 and
its call chains, referring to the synthesized method as𝑚𝑡

′ . Specifi-
cally, when encountering a function call, we determine whether to
inline the callee. If the function call falls under the “Single Caller”

category or the size of callee meets the criteria defined in “Multi
Caller,” LibHunter decides to inline it and appends it into the call
chains of 𝑚𝑡 . Note that inlining process is iterative, meaning each
callee may also inline its own callees. We skip the standard library
calls because our analysis scope is limited to the TPL binary. We
will extract the opcode and string set of 𝑚𝑡

′ as 𝑚𝑜𝑝
𝑡

′
and 𝑚𝑠𝑡𝑟

𝑡

′
,

respectively. If method 𝑚𝑎 and 𝑚𝑠𝑡𝑟
𝑡

′
satisfy the following formula,

we consider they are cross-inlining matched:

𝑠𝑖𝑚𝑐𝑟𝑜𝑠𝑠 (𝑚𝑎,𝑚𝑡

′) =
𝐽 𝐷 (𝑚𝑜𝑝

𝑎 ,𝑚
𝑜𝑝
𝑡

′
)

2 +
𝐽 𝐷 (𝑚𝑠𝑡𝑟

𝑎 ,𝑚𝑠𝑡𝑟
𝑡

′
)

2 ≥ 𝑇1 (3)

If multiple TPL methods in 𝐿𝑚𝑎
meet this condition, we select

the TPL 𝑚𝑡 method with the highest 𝑠𝑖𝑚𝑐𝑟𝑜𝑠𝑠 value as the final
match method.

4.4 TPL Version Identification
After determining the final method matches, we will integrate the
results of Fully Matching and Cross-Inlining Matching to decide the
final class matches and further identify the TPL version. Specifically,
given an app class 𝑐𝑎 and one of its candidate TPL classes 𝑐𝑡 , let
𝑀𝐹𝑐𝑎,𝑐𝑡 = 𝐹𝑢𝑙𝑙𝑦 (𝑚𝑎,𝑚𝑡) be the set of Fully Matching methods
between the two classes, where 𝑚𝑎 represents a method in the
𝑐𝑎 and 𝑚𝑡 represents a method in the 𝑐𝑡 . Similarly, let 𝑀𝐶𝑐𝑎,𝑐𝑡 =

𝐶𝑟𝑜𝑠𝑠 (𝑚𝑎,𝑚
′
𝑡) be the set of Cross Matching methods between the

two classes, where𝑚′
𝑡 is our synthesized method for𝑚𝑡 . We then

compute the class correspondence confidence 𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑐𝑎, 𝑐𝑡),
which is calculated as follows:

𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑐𝑎, 𝑐𝑡) =
∑︁

(𝑚𝑎 ,𝑚𝑡) ∈𝑀𝐹𝑐𝑎,𝑐𝑡
𝑠𝑖𝑧𝑒 (𝑚𝑡)

+
∑︁

(𝑚𝑎 ,𝑚𝑡) ∈𝑀𝐶𝑐𝑎,𝑐𝑡

𝑠𝑖𝑧𝑒 (𝑚′
𝑡)

(4)

Where the 𝑠𝑖𝑧𝑒 (𝑚) calculates the opcodes number for method𝑚.
When computing the confidence, we use the synthesized method
𝑚

′
𝑡 instead of the original 𝑚𝑡 . This is because the callees in the

call-chains of𝑚𝑡 also share their features to help identify the corre-
sponding app method𝑚𝑎 although these callees do not have an ac-
tual definition structure. Then, among the candidate TPL classes for
app class, the class pair with the highest class correspondence con-
fidence is considered the final matched classes. Assume all matched
class pairs are stored in 𝐶𝑀 (𝑎𝑝𝑝, 𝑡𝑝𝑙). We further consider a TPL
to be present in the app if it satisfies the following formula:

How Does Code Optimization Impact Third-party Library Detection for Android Applications? ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

𝑆𝑖𝑚 (𝑇𝑃𝐿, 𝑎𝑝𝑝) =
∑

(𝑐𝑎 ,𝑐𝑡) ∈𝐶𝑀 (𝑎𝑝𝑝,𝑡𝑝𝑙) 𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑐𝑎, 𝑐𝑡)
𝑐𝑠𝑖𝑧𝑒 (𝑎𝑝𝑝) ≥ 𝑇2 (5)

Where 𝑐𝑠𝑖𝑧𝑒 (𝑎𝑝𝑝) calculates the total number of opcodes in the
app and 𝑇2 is the threshold at the library level. According to the
formula, the more opcodes shared between the TPL and the app,
the more likely the TPL is present in the app. If multiple versions
of the same TPL satisfy the formula 5, we select the version with
the largest similarity score as the final result for that TPL. This
includes providing the identified TPLs with group ID, artifact ID,
and version number.

5 Evaluation
This section introduces the experiments performed to evaluate the
effectiveness and usefulness of LibHunter. We first determine the
thresholds (i.e.,𝑇1 and𝑇2) under a subset of apps (40×5) in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1.
To avoid the overfitting problem, only the other apps in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1
are used to conduct the following experiments.

Then, we attempt to answer the following question:
• RQ4 (Effectiveness):Can LibHunter outperform state-of-
the-art methods in terms of optimized, obfuscated, and
shrunk apps? We compare LibHunter with baselines to assess
and compare their effectiveness. We also apply LibHunter to
dataset2 to evaluate its effectiveness in resisting various opti-
mization strategies.

• RQ5 (Components’ Contribution): How is the contribu-
tion of the major components of LibHunter? We evaluate
two main components of LibHunter: the enhanced TPL features
and cross-inlining method matching. We aim to determine if
these components can effectively enhance the performance of
LibHunter against optimization.

• RQ6 (Usefulness): Can LibHunter be applied to real-world
Android apps for vulnerability detection? Since LibHunter can
detect the versions of TPL, we can refer to the NVD [50] to iden-
tify if the detected versions are affected by known vulnerabilities.
If LibHunter finds that an app uses certain vulnerable versions,
it will report a warning, aiding security analysts in identifying
vulnerabilities.

5.1 Experiment Setup
Implementation. We implemented LibHunter in Python. We first
convert TPLs from “.jar/.aar” files to “.dex ”(Dalvik bytecode) files
using D8 [47], and then use Androguard [9] to extract the features
of the TPLs (.dex) and the app (.apk). We can store the extracted fea-
tures of the TPLs in local files, allowing us to reuse these files during
the detection process without repeatedly parsing the TPLs. More-
over, our evaluation was conducted on a Linux Server equipped
with two Intel(R) Xeon(R) Gold 6248R CPUs and 256GB RAM.
Dataset and Metrics. We used the datasets introduced in Sec-
tion 3.1 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 and 𝑑𝑎𝑡𝑎𝑠𝑒𝑡2) to evaluate the performance of
LibHunter. Recall that 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 includes (200 × 5) app variants. To
determine appropriate thresholds, we randomly selected 20% of the
apps (i.e., 40 × 5). These apps, used for tuning parameters, involve
61 × 5 APP-TPL pairs. To avoid bias, all remaining apps and pairs
will be used for further evaluation, involving 318×5 APP-TPL pairs.

We mark this part of the dataset as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ′1. Then we use F1 value
as metric to evaluate the performance of LibHunter.
Thresholds Selection. LibHunter introduces two thresholds. The
𝑇1 is used to set the method-level threshold. An app method and
a TPL method are only considered matched if their similarity ex-
ceeds this threshold. The second threshold,𝑇2, is at the TPL level. If
their similarity between the TPL and app below this threshold, the
TPL is considered not present in the app. Following existing stud-
ies [54, 61], we employ Grid Search [28] to empirically determine
the thresholds by optimizing the F1 value. Specifically, we initially
set both thresholds to 0 and gradually adjust them in steps of 0.05
up to an upper bound of 1. We then select the values that achieve
the highest F1 value. Consequently, we choose the pair 𝑇1 = 0.75
and 𝑇2 = 0.2 to achieve the highest F1 value. These thresholds are
used to conduct the following experiments.

5.2 RQ4: Effectiveness of LibHunter
Overall Results. Table 3 shows the comparison results between
LibHunter and other baselines in terms of TPL detection w.r.t. F1
value. We can find that LibHunter demonstrates strong performance
across various app variants. At library level, LibHunter achieves the
F1 value of 92.4%, 92.7%, and 85.7% for D8-compiled apps, obfuscated
apps, and shrunk apps, respectively. Notably, LibHunter excels in
challenging scenarios involving optimized apps (i.e., “Opt+Srk” and
“Opt+Obf+Srk”), it can achieve the F1 value of 71.9% and 71.4%,
respectively. On average, the F1 value of LibHunter outperforms
the best baselines by 29.3% (71.4%-42.1%) for “Opt+Obf+Srk” apps.
Regarding the version level, the performance of LibHunter remains
superior in most scenarios. In particular, LibHunter achieves the
F1 value of 89.8%, 89.2%, and 79.5% for D8-compiled apps, obfus-
cated apps, and shrunk apps, respectively. We found that LibScout
achieves the best results on “Opt+Srk” apps, with an F1 value of
55.6%. LibScout performs well on ”Opt+Srk” apps not because it
is specifically designed for code optimization, but because it relies
solely on the package hierarchies of TPL for detection, and code
optimization strategies do not affect the package hierarchies. For
instance, if a TPL (e.g., okhttp3) has package hierarchies containing
okhttps/internal/cache2, LibScout uses graph matching algorithms
to detect whether similar package hierarchies exist in the target
app. In contrast, LibHunter delivers the best results, improving the
F1 value significantly over the best baseline by 36.1% (51.1%-15.0%).
However, in challenging scenarios (i.e., “Opt+Obf+Srk”), LibScout’s
F1 value dramatically drops to 1.4%. For these apps, R8 enables code
obfuscation by default, which significantly alters the package hier-
archies of the target app. As a result, the performance of LibScout is
greatly diminished. These results significantly outperform those of
other tools, highlighting LibHunter ’s effectiveness and practicality
in handling apps with various code transformations. This makes it
an effective tool for detecting TPLs for apps.

The promising results achieved by LibHunter are largely due to
its optimization-resilient features. In contrast, other TPL detection
tools were designed without considering code optimizations, focus-
ing instead solely on obfuscation and shrinking (see Section 3.4).
Thus, it is difficult for them to resist the effects of optimization.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Zifan Xie, Ming Wen, Tinghan Li, Yiding Zhu, Qinsheng Hou, and Hai Jin

Table 3: Comparison on the Effectiveness of TPL Detection
Tools on 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

′
1

Level App Variants LibHunter LibScan LibPecker LibScout LibID

Library

D8-compiled 92.4% 91.8% 84.2% 77.6% 81.9%
Obf 92.7% 91.6% 33.1% 1.4% 3.2%
Srk 85.7% 73.3% 43.8% 16.5% 10.3%
Opt+Srk 71.9% 42.1% 3.9% 56.9% 0.8%
Opt+Obf+Srk 71.4% 42.1% 4.0% 1.4% 0.8%

Version

D8-compiled 89.8% 86.0% 81.2% 76.4% 79.3%
Obf 89.2% 84.9% 29.0% 1.4% 2.4%
Srk 79.5% 51.1% 30.7% 13.3% 9.3%
Opt+Srk 51.9% 15.5% 3.3% 55.6% 0.8%
Opt+Obf+Srk 51.1% 15.0% 3.4% 1.4% 0.8%

Table 4: Comparison on Different Optimization Strategies

Library Level Version Level
Strategy LibHunter LibScan LibHunter LibScan
CallSiteOpt. 78.7% 42.6% 62.4% 22.7%
Devirtual. 76.1% 57.1% 60.2% 42.3%
EnumUnbox. 76.8% 57.4% 59.0% 43.8%
EnumVal.Opt. 78.1% 57.3% 61.7% 45.4%
Init.Class.Anal. 77.8% 59.1% 60.5% 46.2%
ClassInlining 75.5% 57.2% 63.5% 44.2%
Inlining 82.5% 41.7% 69.7% 20.8%
NameRefl.Opt. 79.1% 58.0% 60.3% 46.5%
SideEffectAnal. 77.6% 57.6% 59.0% 45.2%
Str.Concaten.Opt 77.8% 57.3% 60.5% 46.9%
Outlining 77.1% 59.9% 61.9% 43.5%
Horiz.ClassMerg. 81.3% 59.3% 63.5% 46.6%
Vertic.ClassMerg. 77.1% 57.9% 61.3% 45.4%

Resilience to different optimization strategies. We compare
LibHunter with other baselines on apps optimized with differ-
ent strategies, as shown in Table 4. The results reveal that Lib-
Hunter outperforms the baselines across all optimization strategies.
Specifically, at the library level, LibHunter achieves F1 values of
78.7% and 82.5% for CSO and Inlining, respectively. At the version
level, it achieves F1 values of 62.4% and 69.7% for these strategies.
In contrast, the F1 values of LibScan drops to 22.7% and 20.8%, re-
spectively. This highlights LibHunter’s effectiveness in countering
CSO and Inlining.

We find that LibHunter also excels with other strategies, notably
outperforming LibScan. For instance, in scenarios involving String-
Concatenation, which directly converts string concatenation opera-
tions into final strings to reduce memory usage, LibHunter achieves
a 77.8% F1 value at the library level, surpassing LibScan’s 57.3%.
This is because LibHunter uses opcodes and strings of methods to
calculate similarity for method matching. In contrast, LibScan re-
quires that an app’s method opcodes contain those of a TPL method
for a match. Many optimization strategies, such as StringConcate-
nation, will modify opcodes, thereby making it challenging for the
app methods to contain the corresponding TPL method’s opcodes.
These results underscore the robustness of LibHunter’s approach
against common optimization strategies.

Table 5: F1 Scores achieved by LibHunter and its variants

Level App Variants LibHunter LibHunter𝑐 LibHunter𝑖

Library

D8-compiled 92.4% 92.2% 91.6%
Obf 92.7% 92.4% 92.1%
Srk 85.7% 85.3% 86.7%
Opt+Srk 71.9% 66.3% 60.1%
Opt+Obf+Srk 71.4% 65.9% 59.5%

Version

D8-compiled 89.8% 89.8% 89.4%
Obf 89.2% 88.8% 89.0%
Srk 79.5% 78.3% 77.8%
Opt+Srk 51.9% 45.7% 40.8%
Opt+Obf+Srk 51.1% 47.7% 39.9%

5.3 RQ5: Contribution of Major Components
Two major components that contribute to LibHunter’s performance
are the enhanced TPL features and the Cross-Inlining Method
Matching component. In this RQ, we aim to investigate the contri-
butions of these components separately by designing two variants
and comparing them with LibHunter on 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

′
1.

• LibHunter𝑐 : This variant disables the enhanced TPL features.
Specifically, when constructing the fuzzy signature of TPL meth-
ods, we do not enhance them into regular rules. Instead, we use
the original fuzzy signature. This variant helps evaluate whether
the enhanced TPL features can mitigate the impact of CSO.

• LibHunter𝑖 : This variant disables the Cross-Inlining Method
Matching component. Specifically, when calculating class corre-
spondence confidence using formula 4, we no longer consider
the results of Cross Matching methods (i.e., 𝑀𝐶𝑐𝑎,𝑐𝑡). Instead, we
only use the results of Fully Matching methods (i.e., 𝑀𝐹𝑐𝑎,𝑐𝑡) to
calculate the confidence. This variant helps assess whether this
component can mitigate the impact of Inlining.

Results.The results are shown in Table 5. In particular, LibHunter and
its variants LibHunter𝑐 and LibHunter𝑖 achieve comparable results
for non-optimized apps. For D8-compiled, obfuscated, and shrunk
apps, LibHunter and its variants LibHunter𝑐 and LibHunter𝑖 achieve
similar results, with all F1 values experiencing minimal declines of
less than 1% for both library and version level. This indicates that
the removal of these components does not affect performance on
non-optimized apps.

However, when optimization is enabled, as shown in the results
of “Opt+Srk” and “Opt+Obf+Srk”, the F1 value of LibHunter𝑐 drops
to 66.3% and 65.9% at library level. In comparison, LibHunter can
outperform it by 5.6% (71.9%-66.3%) and 5.5% (71.4%-65.9%) for these
app variants. This is because our enhanced TPL features improve
class and method matching accuracy. In practice, we found that an
optimized app might have thousands of method parameters altered
by CSO. LibHunter𝑐 ignores these parameter changes and uses the
original fuzzy signature, leading to mismatches for methods.

The F1 value of LibHunter𝑖 is compromised when optimization
is enabled. LibHunter𝑖 achieves an F1 value of 60.1% and 59.5% for
“Opt+Srk” and “Opt+Obf+Srk” apps at library level, respectively.
Therefore, LibHunter can outperform this variant by 11.8% (71.9%-
60.1%) and 11.9% (71.4%-59.5%) for these optimized apps. After ana-
lyzing some of the missed cases, we found not using this component
can lead to missed method matches. For instance, suppose multiple

How Does Code Optimization Impact Third-party Library Detection for Android Applications? ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

TPL methods being synthesized into a single app method through
Inlining. Without this component, these TPL methods fail to find
corresponding app methods, thus not contributing to the overall
similarity between the TPL and the app. This demonstrates that this
component can enhance the accuracy of method matching, thereby
increasing the overall TPL detection performance.

5.4 RQ6: Usefulness of LibHunter
TPL detection tools can be used to identify vulnerabilities by pin-
pointing the TPL versions [12, 30, 32, 46, 59, 61, 63]. For each de-
tected TPL, if its version lies in the affected version range of a
known CVE, the tool will issue a warning (i.e., an App-CVE pair).
To analyze the usefulness of LibHunter, we conduct a comprehen-
sive study on the top 10,000 Google Play apps, aiming to uncover
the real-world risks posed by vulnerable TPLs. For comparison, we
also applied LibScan to these apps to detect vulnerable libraries.
Dataset Collection. We collected commercial apps from Google
Play based on their number of installations and crawled the top
10,000 popular apps. Additionally, we used 31 vulnerable TPLs
(introduced in Section 3.1) for reference checking. These 31 TPLs
involve a total of 94 CVEs. We searched the NVD [50] to find the
TPL versions affected by these 94 CVEs. Due to page limitations, we
put detailed information about these 31 TPLs and their associated
CVEs on our website [37]. We then applied LibHunter to analyze
these apps. If LibHunter detects that an app used a vulnerable TPL
version, it reports a warning (i.e., an App-CVE pair).
Experimental Results. In our collection of 10,000 Google Play
apps, LibHunter identifies that 18.6% (1,855/10,000) of them used
31 vulnerable TPLs, corresponding to 8,659 versions of these TPLs.
Among these 8,659 TPL versions, 43.4% (3,761/8,659) versions were
found to be affected by the 94 known CVEs (note that a single
TPL version can be linked to multiple CVEs), leading LibHunter to
report 3,761 warnings. We found that LibHunter can process an
app every 15 minutes on average, demonstrating its scalability. As a
comparison, we found that LibScan identified only 8.3% (829 out of
10,000) of the apps as involving the 31 vulnerable TPLs, ultimately
generating 2,039 warnings. We observed that the lower number of
warnings reported by LibScan compared to LibHunter is mainly
due to its inadequacy in detecting optimized apps. However,
many apps on Google Play are protected using R8, which challenges
the effectiveness of LibScan.

Upon closely examining the warnings reported by LibHunter,
we found that the two most affected TPLs were Okhttp [39] and
Retrofit [40]. This is because a large number of apps rely on these
networking libraries to communicate with the remote server. Unfor-
tunately, Okhttp has involved two vulnerabilities: CVE-2016-2402,
and CVE-2021-0341. Retrofit is also affected by CVE-2018-1000850.
The failure of these apps to promptly update the TPL to the latest
versions may pose potential threats to users. We understand that
the existence of vulnerable TPLs doesn’t necessarily mean the vul-
nerabilities can be exploited since R8 might remove the affected
methods during shrinking process. However, security analysts can
still further analyze the warnings using other tools (e.g., construct-
ing PoCs or patch presence test tools [27, 55]), thus simplifying
their efforts for inspecting the vulnerability.

6 Discussion
Limitations. This study is constrained by two main limitations:
(1) The inability to model all optimization strategies. While we have
designed components against the two most impactful optimization
strategies (i.e., CSO and Inlining), we have not designed components
to resist other strategies that could also affect the performance of
TPL detection tools. For instance, the HorizontalClassMerger strat-
egy merges multiple classes with the same characteristics (e.g.,
the same number and type of fields) into a single class, which
makes it challenging for LibHunter to match TPL and app classes
accurately. However, the two strategies we focused on, CSO and
Inlining, have been proven to be the most influential on TPL detec-
tion, as discussed in Section 3.4. Additionally, LibHunter has also
demonstrated good results against other optimization strategies
(see Section 5.3). LibHunter’s ability to achieve high F1 scores com-
pared to previous tools proves its resilience to optimization. The
core insight of our approach is that certain optimization processes
can be approximated and inferred via fine-grained static analysis,
and our approximation process can be generalized to other strate-
gies. For example, for NameReflection, this optimization transforms
certain reflection calls into direct function calls. We can infer which
reflection calls are likely to be converted by following its mecha-
nism, thereby extracting enhanced TPL features accordingly via
static analysis. However, we acknowledge that modeling all op-
timizations with static analysis is undoubtedly challenging and
effort-consuming, we leave this task as our important future work.
(2) Bias of obfuscation strategies. This work focuses on investigating
the impact of R8 on existing TPL detection tools, hence it does not
consider other advanced obfuscators. Commercial obfuscators can
offer sophisticated features to protect code against reverse engineer-
ing. For instance, DashO [7] provides control flow randomization
by inserting redundant constraints and functions, which reduce the
readability of the code. Some obfuscators can also obfuscate strings
to reduce code readability. However, our target code protection tool,
R8, is the default tool in the Android build process. Our empirical
study in RQ1 shows that over 41.1% of apps use R8 for distribution
(see Section 3.2). The effectiveness of LibHunter in resisting code
optimization underscores its usefulness in detecting TPL versions.

7 Conclusion
App vendors must ensure the security of apps while developers
often protect their code before release. Therefore, identifying TPL
versions is essential. However, existing TPL detection tools do not
account for the impact of code optimization. Therefore, we have
conducted a systematic study to explore how code optimization
affects the performance of these tools. Our findings reveal that
optimization significantly influences their effectiveness. Based on
these findings, we have developed LibHunter designed to withstand
the effects of code optimization, obfuscation, and shrinking. We
evaluated LibHunter on a large dataset, and the results show that
LibHunter can resist advanced code optimization strategies.

Acknowledgments
We sincerely thank all anonymous reviewers for their valuable
feedback and guidance in improving this paper. This work was spon-
sored by National Natural Science Foundation of China (No.62372193).

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Zifan Xie, Ming Wen, Tinghan Li, Yiding Zhu, Qinsheng Hou, and Hai Jin

References
[1] Allatori. 2024. https://allatori.com/. Accessed: 2024-06.
[2] Sumaya Almanee, Arda Ünal, Mathias Payer, and Joshua Garcia. 2021. Too

Quiet in the Library: An Empirical Study of Security Updates in Android
Apps’ Native Code. In 43rd IEEE/ACM International Conference on Software En-
gineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 1347–1359. https:
//doi.org/10.1109/ICSE43902.2021.00122

[3] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Li-
brary Detection in Android and its Security Applications. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM, 356–367.
https://doi.org/10.1145/2976749.2978333

[4] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmas-
tra: Driving Apps to Test the Security of Third-Party Components. In Pro-
ceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, Au-
gust 20-22, 2014, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, 1021–
1036. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/bhoraskar

[5] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin T. Vechev. 2016.
Statistical Deobfuscation of Android Applications. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM, 343–355. https:
//doi.org/10.1145/2976749.2978422

[6] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on android markets. In Proceedings
of the 36th International Conference on Software Engineering. 175–186.

[7] DashO. 2024. https://www.preemptive.com/products/dasho/. Accessed: 2024-06.
[8] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.

Keep me Updated: An Empirical Study of Third-Party Library Updatability on
Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).
ACM, 2187–2200. https://doi.org/10.1145/3133956.3134059

[9] Anthony Desnos, Geoffroy Gueguen, and Sebastian Bachmann. 2015. Androguard:
Reverse engineering, malware and goodware analysis of android applications…
and more (ninja!).

[10] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Feng-
hao Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. 2018. Understanding
Android Obfuscation Techniques: A Large-Scale Investigation in the Wild. In
Security and Privacy in Communication Networks - 14th International Conference,
SecureComm 2018, Singapore, August 8-10, 2018, Proceedings, Part I (Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, Vol. 254), Raheem Beyah, Bing Chang, Yingjiu Li, and Sencun Zhu
(Eds.). Springer, 172–192. https://doi.org/10.1007/978-3-030-01701-9 10

[11] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In 28th Annual Network and Distributed
System Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Inter-
net Society. https://www.ndss-symposium.org/ndss-paper/towards-measuring-
supply-chain-attacks-on-package-managers-for-interpreted-languages/

[12] Ruian Duan, Ashish Bijlani, Yang Ji, Omar Alrawi, Yiyuan Xiong, Moses
Ike, Brendan Saltaformaggio, and Wenke Lee. 2019. Automating Patch-
ing of Vulnerable Open-Source Software Versions in Application Binaries.
In 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/automating-patching-of-
vulnerable-open-source-software-versions-in-application-binaries/

[13] Yue Duan, Lian Gao, Jie Hu, and Heng Yin. 2019. Automatic Generation of Non-
intrusive Updates for {Third-Party} Libraries in Android Applications. In 22nd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2019). 277–292.

[14] William Enck, Damien Octeau, Patrick D. McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In 20th USENIX Security Symposium,
San Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association.
http://static.usenix.org/events/sec11/tech/full papers/Enck.pdf

[15] F-Droid: Free and Open Source Software. 2024. https://f-droid.org. Accessed:
2024-06.

[16] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann, Jo-
hannes Lerch, and Mira Mezini. 2017. CodeMatch: obfuscation won’t conceal
your repackaged app. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017,
Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman (Eds.).
ACM, 638–648. https://doi.org/10.1145/3106237.3106305

[17] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012.
Unsafe exposure analysis of mobile in-app advertisements. In Proceedings of
the Fifth ACM Conference on Security and Privacy in Wireless and Mobile Net-
works, WISEC 2012, Tucson, AZ, USA, April 16-18, 2012, Marwan Krunz, Loukas
Lazos, Roberto Di Pietro, and Wade Trappe (Eds.). ACM, 101–112. https:
//doi.org/10.1145/2185448.2185464

[18] Guardsquare. 2024. Configuration - Optimizations. https://
www.guardsquare.com/manual/configuration/optimizations. Accessed:
2024-06.

[19] Guardsquare. 2024. Configuration - Usage. https://www.guardsquare.com/
manual/configuration/usage. Accessed: 2024-06.

[20] Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A large-scale empirical
study on the effects of code obfuscations on Android apps and anti-malware
products. In Proceedings of the 40th International Conference on Software Engi-
neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 421–431.
https://doi.org/10.1145/3180155.3180228

[21] Qiang He, Bo Li, Feifei Chen, John C. Grundy, Xin Xia, and Yun Yang. 2022. Diver-
sified Third-Party Library Prediction for Mobile App Development. IEEE Trans.
Software Eng. 48, 2 (2022), 150–165. https://doi.org/10.1109/TSE.2020.2982154

[22] Jie Huang, Nataniel P. Borges Jr., Sven Bugiel, and Michael Backes. 2019. Up-To-
Crash: Evaluating Third-Party Library Updatability on Android. In IEEE European
Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19,
2019. IEEE, 15–30. https://doi.org/10.1109/EUROSP.2019.00012

[23] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. 2017. The ART
of App Compartmentalization: Compiler-based Library Privilege Separation on
Stock Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu
(Eds.). ACM, 1037–1049. https://doi.org/10.1145/3133956.3134064

[24] Nasif Imtiaz, Seaver Thorn, and Laurie A. Williams. 2021. A comparative
study of vulnerability reporting by software composition analysis tools. In
ESEM ’21: ACM / IEEE International Symposium on Empirical Software Engi-
neering and Measurement, Bari, Italy, October 11-15, 2021, Filippo Lanubile, Mar-
cos Kalinowski, and Maria Teresa Baldassarre (Eds.). ACM, 5:1–5:11. https:
//doi.org/10.1145/3475716.3475769

[25] Haoxiang Jia, Ming Wen, Zifan Xie, Xiaochen Guo, Rongxin Wu, Maolin Sun,
Kang Chen, and Hai Jin. 2023. Detecting JVM JIT Compiler Bugs via Exploring
Two-Dimensional Input Spaces. In 45th IEEE/ACM International Conference on
Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE,
43–55. https://doi.org/10.1109/ICSE48619.2023.00016

[26] Ling Jiang, Junwen An, Huihui Huang, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun
Zhang. 2024. BinaryAI: Binary Software Composition Analysis via Intelligent
Binary Source Code Matching. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024.
ACM, 224:1–224:13. https://doi.org/10.1145/3597503.3639100

[27] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang,
Xinyu Xing, Min Yang, and Zhemin Yang. 2020. PDiff: Semantic-based Patch
Presence Testing for Downstream Kernels. In CCS ’20: 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, Virtual Event, USA, November
9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.).
ACM, 1149–1163. https://doi.org/10.1145/3372297.3417240

[28] Steven M. LaValle, Michael S. Branicky, and Stephen R. Lindemann. 2004. On the
Relationship between Classical Grid Search and Probabilistic Roadmaps. Int. J.
Robotics Res. 23, 7-8 (2004), 673–692. https://doi.org/10.1177/0278364904045481

[29] Bodong Li, Yuanyuan Zhang, Juanru Li, Runhan Feng, and Dawu Gu. 2019.
APPCOMMUNE: Automated Third-Party Libraries De-duplicating and Updat-
ing for Android Apps. In 26th IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering, SANER 2019, Hangzhou, China, February
24-27, 2019, Xinyu Wang, David Lo, and Emad Shihab (Eds.). IEEE, 344–354.
https://doi.org/10.1109/SANER.2019.8668009

[30] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. LibD: scalable and precise third-party library detection
in android markets. In Proceedings of the 39th International Conference on Soft-
ware Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián
Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE / ACM, 335–346.
https://doi.org/10.1109/ICSE.2017.38

[31] Apache Log4j2. 2024. https://github.com/apache/logging-log4j2. Accessed:
2024-06.

[32] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast and
accurate detection of third-party libraries in Android apps. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016 - Companion Volume, Laura K. Dillon, Willem Visser, and Laurie A.
Williams (Eds.). ACM, 653–656. https://doi.org/10.1145/2889160.2889178

[33] Google Play. 2024. https://play.google.com/. Accessed: 2024-06.
[34] Proguard. 2024. https://www.guardsquare.com/proguard. Accessed: 2024-06.
[35] R8. 2024. https://developer.android.google.cn/studio/build/shrink-

code#optimization. Accessed: 2024-06.

https://allatori.com/
https://doi.org/10.1109/ICSE43902.2021.00122
https://doi.org/10.1109/ICSE43902.2021.00122
https://doi.org/10.1145/2976749.2978333
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/bhoraskar
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/bhoraskar
https://doi.org/10.1145/2976749.2978422
https://doi.org/10.1145/2976749.2978422
https://www.preemptive.com/products/dasho/
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1007/978-3-030-01701-9_10
https://www.ndss-symposium.org/ndss-paper/towards-measuring-supply-chain-attacks-on-package-managers-for-interpreted-languages/
https://www.ndss-symposium.org/ndss-paper/towards-measuring-supply-chain-attacks-on-package-managers-for-interpreted-languages/
https://www.ndss-symposium.org/ndss-paper/automating-patching-of-vulnerable-open-source-software-versions-in-application-binaries/
https://www.ndss-symposium.org/ndss-paper/automating-patching-of-vulnerable-open-source-software-versions-in-application-binaries/
http://static.usenix.org/events/sec11/tech/full_papers/Enck.pdf
https://f-droid.org
https://doi.org/10.1145/3106237.3106305
https://doi.org/10.1145/2185448.2185464
https://doi.org/10.1145/2185448.2185464
https://www.guardsquare.com/manual/configuration/optimizations
https://www.guardsquare.com/manual/configuration/optimizations
https://www.guardsquare.com/manual/configuration/usage
https://www.guardsquare.com/manual/configuration/usage
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1109/TSE.2020.2982154
https://doi.org/10.1109/EUROSP.2019.00012
https://doi.org/10.1145/3133956.3134064
https://doi.org/10.1145/3475716.3475769
https://doi.org/10.1145/3475716.3475769
https://doi.org/10.1109/ICSE48619.2023.00016
https://doi.org/10.1145/3597503.3639100
https://doi.org/10.1145/3372297.3417240
https://doi.org/10.1177/0278364904045481
https://doi.org/10.1109/SANER.2019.8668009
https://doi.org/10.1109/ICSE.2017.38
https://github.com/apache/logging-log4j2
https://doi.org/10.1145/2889160.2889178
https://play.google.com/
https://www.guardsquare.com/proguard
https://developer.android.google.cn/studio/build/shrink-code#optimization
https://developer.android.google.cn/studio/build/shrink-code#optimization

How Does Code Optimization Impact Third-party Library Detection for Android Applications? ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[36] Google Maven Central repository. 2024. https://maven.google.com/. Accessed:
2024-06.

[37] LibHunter Repository. 2024. https://github.com/CGCL-codes/LibHunter. Ac-
cessed: 2024-06.

[38] Maven Central repository. 2024. https://www.maven.org/. Accessed: 2024-06.
[39] Okhttp Repository. 2024. https://square.github.io/okhttp/. Accessed: 2024-06.
[40] Retrofit Repository. 2024. https://github.com/square/retrofit. Accessed: 2024-06.
[41] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. 2012. AdSplit: Separating

Smartphone Advertising from Applications. In Proceedings of the 21th USENIX
Security Symposium, Bellevue, WA, USA, August 8-10, 2012, Tadayoshi Kohno
(Ed.). USENIX Association, 553–567. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/shekhar

[42] Jaccard Similarity. 2024. https://en.wikipedia.org/wiki/Jaccard index. Accessed:
2024-06.

[43] ”Statista”. 2024. https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/. Accessed: 2024-06.

[44] Android Studio. 2024. Shrink, obfuscate, and optimize your app. https:
//developer.android.com/build/shrink-code. Accessed: 2024-06.

[45] Zhushou Tang, Minhui Xue, Guozhu Meng, Chengguo Ying, Yugeng Liu, Jianan
He, Haojin Zhu, and Yang Liu. 2019. Securing android applications via edge
assistant third-party library detection. Comput. Secur. 80 (2019), 257–272.
https://doi.org/10.1016/J.COSE.2018.07.024

[46] Zhushou Tang, Minhui Xue, Guozhu Meng, Chengguo Ying, Yugeng Liu, Jianan
He, Haojin Zhu, and Yang Liu. 2019. Securing android applications via edge
assistant third-party library detection. Comput. Secur. 80 (2019), 257–272.
https://doi.org/10.1016/j.cose.2018.07.024

[47] D8 Tool. 2024. https://developer.android.com/studio/releases/platform-tools.
Accessed: 2024-06.

[48] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,
and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active
Learning and Regeneration. In CCS ’21: 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,
1755–1770. https://doi.org/10.1145/3460120.3484736

[49] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,
and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active
Learning and Regeneration. In CCS ’21: 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,
1755–1770. https://doi.org/10.1145/3460120.3484736

[50] National vulnerability database. 2024. https://nvd.nist.gov. Accessed: 2024-06.
[51] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick

Traynor, and Sascha Fahl. 2018. A Large Scale Investigation of Obfuscation
Use in Google Play. In Proceedings of the 34th Annual Computer Security Applica-
tions Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018. ACM,
222–235. https://doi.org/10.1145/3274694.3274726

[52] Apps with most third-party libraries. 2024. http://privacygrade.org/third party
libraries. Accessed: 2024-06.

[53] Yafei Wu, Cong Sun, Dongrui Zeng, Gang Tan, Siqi Ma, and Peicheng Wang. 2023.
LibScan: Towards More Precise Third-Party Library Identification for Android

Applications. In 32nd USENIX Security Symposium, USENIX Security 2023, Ana-
heim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and Carmela Troncoso
(Eds.). USENIX Association, 3385–3402. https://www.usenix.org/conference/
usenixsecurity23/presentation/wu-yafei

[54] Liang Xiao, Ruili Wang, Bin Dai, Yuqiang Fang, Daxue Liu, and Tao Wu. 2018.
Hybrid conditional random field based camera-LIDAR fusion for road detection.
Inf. Sci. 432 (2018), 543–558. https://doi.org/10.1016/j.ins.2017.04.048

[55] Zifan Xie, Ming Wen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing
Zou, and Hai Jin. 2023. Precise and Efficient Patch Presence Test for Android
Applications against Code Obfuscation. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2023, Seattle,
WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.). ACM, 347–359.
https://doi.org/10.1145/3597926.3598061

[56] Zifan Xie, Ming Wen, Shiyu Qiu, and Hai Jin. 2024. Validating JVM Compilers via
Maximizing Optimization Interactions. In Proceedings of the the ACM Conference
on Architectural Support for Programming Languages and Operating Systems.

[57] Jing Yang, Yibiao Yang, Maolin Sun, Ming Wen, Yuming Zhou, and Hai Jin.
2022. Isolating Compiler Optimization Faults via Differentiating Finer-grained
Options. In IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE, 481–491.
https://doi.org/10.1109/SANER53432.2022.00065

[58] Geunha You, Gyoosik Kim, Seong-je Cho, and Hyoil Han. 2021. A Compar-
ative Study on Optimization, Obfuscation, and Deobfuscation tools in An-
droid. J. Internet Serv. Inf. Secur. 11, 1 (2021), 2–15. https://doi.org/10.22667/
JISIS.2021.02.28.002

[59] Xian Zhan, Lingling Fan, Sen Chen, Feng Wu, Tianming Liu, Xiapu Luo, and Yang
Liu. 2021. ATVHUNTER: Reliable Version Detection of Third-Party Libraries for
Vulnerability Identification in Android Applications. In 43rd IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May
2021. IEEE, 1695–1707. https://doi.org/10.1109/ICSE43902.2021.00150

[60] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang
Liu. 2022. Research on Third-Party Libraries in Android Apps: A Taxonomy and
Systematic Literature Review. IEEE Trans. Software Eng. 48, 10 (2022), 4181–4213.
https://doi.org/10.1109/TSE.2021.3114381

[61] Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. 2019. LibID: reli-
able identification of obfuscated third-party Android libraries. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Møller
(Eds.). ACM, 55–65. https://doi.org/10.1145/3293882.3330563

[62] Xiao Zhang, Amit Ahlawat, and Wenliang Du. 2013. AFrame: isolating adver-
tisements from mobile applications in Android. In Annual Computer Security
Applications Conference, ACSAC ’13, New Orleans, LA, USA, December 9-13, 2013,
Charles N. Payne Jr. (Ed.). ACM, 9–18. https://doi.org/10.1145/2523649.2523652

[63] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min Yang,
and Hao Chen. 2018. Detecting third-party libraries in Android applications
with high precision and recall. In 25th International Conference on Software Anal-
ysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March 20-23,
2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (Eds.). IEEE
Computer Society, 141–152. https://doi.org/10.1109/SANER.2018.8330204

https://maven.google.com/
https://github.com/CGCL-codes/LibHunter
https://www.maven.org/
https://square.github.io/okhttp/
https://github.com/square/retrofit
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
https://en.wikipedia.org/wiki/Jaccard_index
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/build/shrink-code
https://developer.android.com/build/shrink-code
https://doi.org/10.1016/J.COSE.2018.07.024
https://doi.org/10.1016/j.cose.2018.07.024
https://developer.android.com/studio/releases/platform-tools
https://doi.org/10.1145/3460120.3484736
https://doi.org/10.1145/3460120.3484736
https://nvd.nist.gov
https://doi.org/10.1145/3274694.3274726
http://privacygrade.org/third_party_libraries
http://privacygrade.org/third_party_libraries
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-yafei
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-yafei
https://doi.org/10.1016/j.ins.2017.04.048
https://doi.org/10.1145/3597926.3598061
https://doi.org/10.1109/SANER53432.2022.00065
https://doi.org/10.22667/JISIS.2021.02.28.002
https://doi.org/10.22667/JISIS.2021.02.28.002
https://doi.org/10.1109/ICSE43902.2021.00150
https://doi.org/10.1109/TSE.2021.3114381
https://doi.org/10.1145/3293882.3330563
https://doi.org/10.1145/2523649.2523652
https://doi.org/10.1109/SANER.2018.8330204

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The D8 and R8 compiler
	2.2 Related Work

	3 Empirical Study
	3.1 Dataset Construction
	3.2 RQ1: Pervasiveness of R8/D8
	3.3 RQ2: Impact of Code Optimization
	3.4 RQ3: Impact of Optimization Strategies

	4 Approach
	4.1 Signature-based Class Matching
	4.2 Similarity-Based Method Matching
	4.3 Cross-Inlining Method Matching
	4.4 TPL Version Identification

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ4: Effectiveness of LibHunter
	5.3 RQ5: Contribution of Major Components
	5.4 RQ6: Usefulness of LibHunter

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

